
Fast Exhaustive Search for Polynomial Systems in F2

GPUs for Brute-Force Enumeration

presented by: Bo-Yin Yang

Institute of Information Science
and TWISC, Academia Sinica

Taipei, Taiwan
by@crypto.tw

CHES’10 @UCSB on Aug18



Outline

1 Executive Summary

2 Theory
About the Gray Code Method
Trade-offs

3 Empirical Side
On Commodity PCs
GPU Implementation

4 Discussion

B.-Y. Yang et al (IIS-TWISC@Sinica) Brute-Forcing F2 Polynomial Systems Aug. 18, 2010 2 / 24



Our Results

The Problem

Solve for n variables in F2 from m ≥ n “generic” equations of low degree.

The Results: Generalized Gray Code Enumeration

Data for 48 vars and 48 to 64 equations below, with estimate in USD
to solve a Patarin IP challenge (64-64, quartic) in 1 month.

Beat all Gröbner Bases solvers for practical sizes, generic case.

Time (minutes) Testing platform #cores est. cost
d =2 d =3 d =4 GHz Arch. Name USD (#used) (USD)

1217 2686 3191 2.2 K10 Phenom 9550 120 4(1) 54,000
1157 1992 2685 2.3 K10+ Opteron 2376 184 4(1)

113,316
142 240 336 2.3 K10+ Opteron 2376×2 368 8(8)
780 1364 1819 2.4 C2 Xeon X3220 210 4(1) 60,720
671 1176 1560 2.83 C2+ Core2 Q9550 225 4(1)

55,575
179 294 390 2.83 C2+ Core2 Q9550 225 4(4)
761 1279 1856 2.26 Ci7 Xeon E5520 385 4(1)

78,720
95 154 225 2.26 Ci7 Xeon E5520×2 770 8(8)
41 73 271 1.3 G200 GTX 280 n/a 240 n/a
21 36 126 1.25 G200 GTX 295 500 480 15,500
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Exhaustive Search in degree d ≥ 2 – Summary

1 Complexity of each iteration :
(n
d

)
→ O(d lgβ(d) n)

2 Internal state: 1 →
( n
d−1

)
Headline (for all degree d ≥ 2)

Exhaustive search requires d XOR per candidate vector.

3 Easy to implement efficiently

4 ...on GPUs too !
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Naive Search for n F2-vars in m eqs of degree-d?

A deg = d equation over F2 has
(n
k

)
terms at degree k for k ≤ d .

≈ m
(n
d

)
bit operations (OPs) per input, naively.

≈ 2
(n
d

)
OPs per input if we compute serially and early-abort

If logical operations are w -wide, we can bit-slice to speed up ∼ w×

“Folklore” Gray Code Search

Define bi (x) := index of the i-th non-zero bit in binary representation of x
(−1 if no such), then standard Gray code: G (k) = G (k − 1) XOR 2b1(k).
With ei representing the unit vector in the i-th direction, define:

di f (x) := f (x + ei )− f (x),

then identifying a codeword x with a vector in (F2)
n, we have

f (G (k)) = f (G (k − 1)) + db1(k)f (G (k − 1)).

When f quadratic: differentials di f ’s affine, can evaluate in time O(n).
Per-input time complexity down to O(n), no change in memory use.
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Recursive Gray Code Search

Every 2 iterations x0 (lowest bit of Gray Code) flips.

Quadratic Example (with dij f (x) := di f (x + ej)− di f (x))

f (1)− f (0) = d0f (0)

f (11)− f (1) = d1f (1) = d1f (0) + d01

f (10)− f (11) = d0f (11) = d0f (10) = d0f (0) + d01

f (110)− f (10) = d2f (10) = d2f (0) + d12

f (111)− f (110) = d0f (110) = d0f (11) + d02

2 XORs/input = ...(n/2)× speedup, n× RAM use
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Recursive Gray Code Search
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Hence, each time x0 is flipped, the partial derivative to x0 has last
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xi (not low bit) always changes when the i bits below = 10 · · · 0, and
if we strike out the last i bits of a Gray Code sequence, we get Gray
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Part of 5-bit Gray Code Example Table

Note that the initial appearance of each δ requires a setup.
index code b1 b2 b3 b4 actions(quadratic) actions(quartic)

00000 00000 -1 -1 -1 -1

00001 00001 0 -1 -1 -1 δ += δ0 δ += δ0
00010 00011 1 -1 -1 -1 δ += δ1 δ += δ1
00011 00010 0 1 -1 -1 δ += (δ0 += C0,1) δ += (δ0 += δ0,1)

00100 00110 2 -1 -1 -1 δ += δ2 δ += δ2
00101 00111 0 2 -1 -1 δ += (δ0 += C0,2) δ += (δ0 += δ0,2)

00110 00101 1 2 -1 -1 δ += (δ1 += C1,2) δ += (δ1 += δ1,2)

00111 00100 0 1 2 -1 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += δ0,1,2))

01000 01100 3 -1 -1 -1 δ += δ3 δ += δ3
01001 01101 0 3 -1 -1 δ += (δ0 += C0,3) δ += (δ0 += δ0,3)

01010 01111 1 3 -1 -1 δ += (δ1 += C1,3) δ += (δ1 += δ1,3)

01011 01110 0 1 3 -1 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += δ0,1,3))

01100 01010 2 3 -1 -1 δ += (δ2 += C2,3) δ += (δ2 += δ2,3)

01101 01011 0 2 3 -1 δ += (δ0 += C0,2) δ += (δ0 += (δ0,2 += δ0,2,3))

01110 01001 1 2 3 -1 δ += (δ1 += C1,2) δ += (δ1 += (δ1,2 += δ1,2,3))

01111 01000 0 1 2 3 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += (δ0,1,2 += C0,1,2,3)))

10000 11000 4 -1 -1 -1 δ += δ4 δ += δ4
10001 11001 0 4 -1 -1 δ += (δ0 += C0,4) δ += (δ0 += δ0,4)

10010 11011 1 4 -1 -1 δ += (δ1 += C1,4) δ += (δ1 += δ1,4)

10011 11010 0 1 4 -1 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += δ0,1,4))

10100 11110 2 4 -1 -1 δ += (δ2 += C2,4) δ += (δ2 += δ2,4)

10101 11111 0 2 4 -1 δ += (δ0 += C0,2) δ += (δ0 += (δ0,2 += δ0,2,4))

10110 11101 1 2 4 -1 δ += (δ1 += C1,2) δ += (δ1 += (δ1,2 += δ1,2,4))

10111 11100 0 1 2 4 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += (δ0,1,2 += C0,1,2,4)))

11000 10100 3 4 -1 -1 δ += (δ3 += C3,4) δ += (δ3 += δ3,4)

11001 10101 0 3 4 -1 δ += (δ0 += C0,3) δ += (δ0 += (δ0,3 += δ0,3,4))

11010 10111 1 3 4 -1 δ += (δ1 += C1,3) δ += (δ1 += (δ1,3 += δ1,3,4))

11011 10110 0 1 3 4 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += (δ0,1,3 += C0,1,3,4)))
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01111 01000 0 1 2 3 δ += (δ0 += C0,1) δ += (δ0 += (δ0,1 += (δ0,1,2 += C0,1,2,3)))

Initialization Costs
When i1 > i2 > · · · > ik , the differential di1, i2,..., ik appears initially as

∂k

∂xi1∂xi2 · · · ∂xik

f (ei1−1 + ei2−1 + · · ·+ eik−1)

sum of
∑d−k

j=0

(
k
j

)
coefficients total ≈

(
n

d−1

)
d XORs.
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Partial (s-of-n) Evaluation

Substituting s variables out of n to get 2s subsystems in n − s variables.

Why Do We Need Partial Evaluation

Required for Parallel Processing

Convenient for memory management

Optimization (for Enumeration and Check)

Things to Note

Coeffs of deg-k terms are deg = d − k poly in the s vars.

Highest order coefficients are constant, can be shared.

Store coefficients of subsystems out to buffer DRAM, may require
two-stages if memory is limited (e.g., GPUs).

Basically same code as for enumeration
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Early Abort and Architectural Concerns

Machine test-for-0 on w -bit-wide word, does w ANDs + branch.
Evaluating many eqs. wastes less than not using machine instructions.
So “enumerate” on f (0) · · · f (w−1) then “check” 2n−w passers.

Complete Granularity: Enumeration and Partial Eval as One?

Step 1.
partial evaluate 
with suitable si

 L
Step 2.
evaluate             by substituting
into the corresponding subsystem

f (i)(v) )1( −∈ iVv

f (i)

To compute V(i) from V(i-1) for each i

f (i)

v

If components of f (x) = 0
are filters, what is the best
#vars to partially evaluate
from the equation f (i)?

Needs
(
2 ·

∑d
j=0

(
n−s

j

))
times 2n−s in V (i) .
Plus must partial evaluate
2s times

∑d
j=0(n− j)

(
n−s

j

)
(n, n, n − 1, . . . , 0, . . .)
is generally good if we
search for some good si .
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“optimal” is (n, n, n − `, n − `− 1, . . . , h + 1, h, 0, . . . , 0) for small (h, `).
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Check vs Enumerate

Changing check width

If per-input cost to enumerate is c , cost to check (verify) v , width w , and
we want to change the width to w ′ < w , then we must check

c + 2−wv
?
> c ′ + 2−w ′

v ′

if w ′ < w , it simplifies to checking c − c ′
?
> 2−w ′

v ′.

CPU with SSE2 instructions: Optimal Width=16

With SSE2, all widths are powers of two. Assuming that w ′ = w/2 and
c ′ ≈ c/2, then it is better to use w ′-wide if v ′ < 2w ′

c ′.
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c ′ ≈ c/2, then it is better to use w ′-wide if v ′ < 2w ′

c ′.
In all our tests when w ′ = 16, v ′ is about 400, 1500, and 5000 cycles for
degrees 2, 3, 4 respectively, and c ′ on Intel CPUs is around 0.4, 0.7, 0.9
cycles respectively (with AMD CPUs slower by up to a factor of 2).
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c ′.
In all our tests when w ′ = 16, v ′ is about 400, 1500, and 5000 cycles for
degrees 2, 3, 4 respectively, and c ′ on Intel CPUs is around 0.4, 0.7, 0.9
cycles respectively (with AMD CPUs slower by up to a factor of 2).
Since 210 < v ′/c ′ < 214 in all cases, this points to our checking w ′ = 16
equations at a time being better than either 32 or 8.

B.-Y. Yang et al (IIS-TWISC@Sinica) Brute-Forcing F2 Polynomial Systems Aug. 18, 2010 10 / 24



Our Programs

Three Stages

Partial Evaluation: at least partly done on the CPU.

Enumerate: this accounts for more than 90% of runtime.

Checking: always done on the CPU.

Code Generation

We have perl scripts that generate the programs given some parameters,
which are very regular and straight-line code, for both GPU and CPU.
These generated programs also capture our ideas about memory space
allocation and register spilling, etc.
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Vector Code on Modern x86-64 CPUs

The SSE2 Instruction Set

SSE2 instruction let you act in parallel on 8-, 16-, 32-, or 64-bit
chunks simultaneously. Here we do 8 chunks at a time.

Turns out that more than SSE2 instruction set does not help much.

Intel Core’s can dispatch 3 operations on XMM registers per cycle,
AMD CPUs only 2.

Since we are working with more than 1 entries in an XMM register, it
takes extra work to extract, particularly the PMOVMSKB instruction.

Caches are basically large enough and good enough to mask the
latencies except on the old version of the K10.

Notes

Branches are relatively cheap, so we use them instead of conditionals.

s is smaller than for GPUs since we do not need as many threads.
But for both CPUs and GPUs, s increase roughly linear as n.
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latencies except on the old version of the K10.

Notes

Branches are relatively cheap, so we use them instead of conditionals.

s is smaller than for GPUs since we do not need as many threads.
But for both CPUs and GPUs, s increase roughly linear as n.
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Performance Testing on PCs

Timing (mins) and Cycle counts at n = 48, m = 64

deg = 2 deg = 3 deg = 4 CPU

kernel cycle kernel cycle kernel cycle GHz arch

1217 0.57 2686 1.26 3191 1.50 2.2 K10

1157 0.57 1992 0.98 2685 1.32 2.3 K10+

780 0.40 1364 0.70 1819 0.93 2.4 C2

671 0.41 1176 0.71 1560 0.94 2.83 C2+

761 0.37 1279 0.62 1856 0.89 2.26 Ci7

Notes

Cycle count is almost strictly a function of arch

scaling with any modern core is almost perfect
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Sample Code

C Intrinsics Code
...

diff0 ^= deg2_block[ 1 ];

res ^= diff0;

Mask = _mm_cmpeq_epi16(res, zero);

mask = _mm_movemask_epi8(Mask);

if(mask) check(mask, idx, x^155);

...

Assembly Code
.L746:

movq 976(%rsp), %rax //

pxor (%rax), %xmm2 // d_y ^= C_yz

pxor %xmm2, %xmm1 // res ^= d_y

pxor %xmm0, %xmm0 //

pcmpeqw %xmm1, %xmm0 // cmp words for eq

pmovmskb %xmm0, %eax // movemask

testw %ax, %ax // set flag for branch

jne .L1266 // if needed, check and

.L747: // comes back here
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Performance Analysis

Instruction counts

For quadratics 2 XORs, then 1 COMPARE, then a PMOVMSKB, then a
test-and-branch. Hence, 6 instructions including 3 XMM loads. Ideal
value is 3 cycles/loop. Actual value is slightly higher.

For cubics/quartics, 7/8 XMM instructions respectively.

Comparison to PS3

Version used for cryptanalysis is sold at a subsidy (US$300) max. 6×
3.2GHz 128-bit OPs.

The competition

AMD K10+ can do 4 core × 2 = 8 XMM OPs/cycle.

Intel Quad Core’s can do 4 core ×3 = 12 XMM OPs/cycle.

The K10+ has utilization ratio ∼ 7/8, So a 3.2GHz Phenom IIx4 (or
2.66GHz Ci7) always beats a Cell.
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nVidia G200 GPU on GeForce GTX 280 / Tesla C1060
470 mm2, TDP: 204 watts (TSMC 55nm), >1.4 bil transistor, w. ≈ 1GB DRAM

1062.72 GFLOPS (single-precision), 159 GB/s mem bandwidth vs. 106.56
GFLOPS, 25.6 GB/s of Intel Core i7 at 3.33 GHz

30 “Multiprocessors” (MPs, Real Units of GPU Computing)
I 8 ALUs, each can do 1 FMADD/cycle @ 1.296GHz
I 2 Special Function Units, each 2 actions/cycle (incl. FMUL)
I 16k registers (each 32bits), 16kB shared memory
I 8kB constant cache into 64kB constant area
I Latency: 22-26 cycles from SRAM 20 cycles, > 400 cycles from DRAM.
I Opportunitistic but in-order dispatcher, 1 64-bit instruction decode per

4 cycles, ≥ 128 lightweight hardware threads (4 “warps”) needed for
performance. We don’t even mention the Magic Textile Units.

How to Program with CUDA
I Program in C-like language *.cu file
I Compile with nvcc to pseudomachine code (*.ptx).
I Load with nVidia driver, load/launch from the main program.
I Buggy compiler and can only jump to first 16k instructions (!).
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GPU Code and Performance Analysis

2.6 SP cycles for quadratics
...
diff0 ^= deg2_block[ 3 ]; // d_y^=d_yz
res ^= diff0; // res^=d_y
if( res == 0 ) y = z; // cmov
if( res == 0 ) z = code233; // cmov
diff1 ^= deg2_block[ 4 ];
res ^= diff1;
if( res == 0 ) y = z;
if( res == 0 ) z = code234;
diff0 ^= deg2_block[ 0 ];
res ^= diff0;
if( res == 0 ) y = z;
if( res == 0 ) z = code235;
...

The “if (X=0) Y=Z;” bit is actually the magic words to emit a
predicated move, a 32-bit “half instruction”.
B.-Y. Yang et al (IIS-TWISC@Sinica) Brute-Forcing F2 Polynomial Systems Aug. 18, 2010 17 / 24



GPU Code and Performance Analysis

2.6 SP cycles for quadratics

The inner loop has 5-6 instructions but < 3 cycles, clearly the SFU can
dispatch some instructions, very well.

...

xor.b32 $r19, $r19, c0[0x000c] // d_y^=d_yz

xor.b32 $p1|$r20, $r17, $r20

mov.b32 $r3, $r1

mov.b32 $r1, s[$ofs1+0x0038]

xor.b32 $r4, $r4, c0[0x0010]

xor.b32 $p0|$r20, $r19, $r20 // res^=d_y

@$p1.eq mov.b32 $r3, $r1

@$p1.eq mov.b32 $r1, s[$ofs1+0x003c]

xor.b32 $r19, $r19, c0[0x0000]

xor.b32 $p1|$r20, $r4, $r20

@$p0.eq mov.b32 $r3, $r1 // cmov

@$p0.eq mov.b32 $r1, s[$ofs1+0x0040] // cmov

...

Switching to predicated branch instead of predicated move makes each
input take some 3.5 cycles on average!
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CPU vs GPU
Need to rerun a thread

Due to artifacts of GPU programming, threads return “no possible
solution”, “one possible solution”, and “too many possible solutions”. The
last is rerun completely on CPU.

GPU Thread-Checking Probability

If we have n variables, pre-evaluate s, and check w equations via Gray
Code, then the probability of a subsystem with 2n−s vectors including at

least two candidates ≈
(2n−s

2

)
(1− 2−w )2

n−s
(2−w )2 ≈ 1/22(s+w−n)+1,

provided that n < s + w .

Example

For n = 48, s = 22, w = 32, the thread-recheck probability is about 1 in
213, and we must re-check about 29 threads (using Gray Code).
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solution”, “one possible solution”, and “too many possible solutions”. The
last is rerun completely on CPU.

GPU Thread-Checking Probability

If we have n variables, pre-evaluate s, and check w equations via Gray
Code, then the probability of a subsystem with 2n−s vectors including at

least two candidates ≈
(2n−s

2

)
(1− 2−w )2

n−s
(2−w )2 ≈ 1/22(s+w−n)+1,

provided that n < s + w .

Example

For n = 48, s = 22, w = 32, the thread-recheck probability is about 1 in
213, and we must re-check about 29 threads (using Gray Code).

It gains little with conditionals (a packed SUBTRACT update a counter
then 3 bookkeeping instructions, still 3 loads) over branching on CPU and
a thread-check is expensive, hence the latter.
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Performance Comparison at 32 variables, 64 equations

Cycle Counts (SP vs core)

deg C2 C2+ K10 K10+ Ci7 GTX280 GTX295

2 0.40 0.40 0.58 0.57 0.41 2.87 2.93

3 0.65 0.66 1.21 0.91 0.66 4.66 4.90

4 0.95 0.96 1.41 1.32 1.00 15.01 14.76

2.66GHz Core i7 vs 1.242GHz GT200 GPU

For quadratics, 1 Core i7 ≈ 15.2SP . 2MP

For cubics, 1 Core i7 ≈ 16.6SP & 2MP

For quartics 1 Core i7 ≈ 38.4SP ≈ 4.8MP
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deg C2 C2+ K10 K10+ Ci7 GTX280 GTX295

2 0.40 0.40 0.58 0.57 0.41 2.87 2.93

3 0.65 0.66 1.21 0.91 0.66 4.66 4.90

4 0.95 0.96 1.41 1.32 1.00 15.01 14.76

2.66GHz Core i7 vs 1.242GHz GT200 GPU

For quadratics, 1 Core i7 ≈ 15.2SP . 2MP

For cubics, 1 Core i7 ≈ 16.6SP & 2MP

For quartics 1 Core i7 ≈ 38.4SP ≈ 4.8MP

Why is quartics so different?
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GPU Memory Pressure Partly Explained

Each thread on a G200b has less than 150 “slots” of 32-bit fast SRAM
space (registers and shared memory) to store the differentials. So they
must inevitably overflow (spill) to slow DRAM (“local memory”).

Frequency of Differential Access

The differential δi1>i2>···>ik is accessed once every 2i1+1 inputs. We
allocate the most often used differentials to fast SRAM memory and read
the remaining from slow DRAM.
Each MP with 8 ALUs (SPs) can potentially dispatch 8 instruction per
cycle or more, but the DRAM controllers can only load once every cycle to
each MP. Hence, we can have at most one DRAM load out of every 8
instructions (< 12.5%) if we wish to get full use from ALUs.
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allocate the most often used differentials to fast SRAM memory and read
the remaining from slow DRAM.
Each MP with 8 ALUs (SPs) can potentially dispatch 8 instruction per
cycle or more, but the DRAM controllers can only load once every cycle to
each MP. Hence, we can have at most one DRAM load out of every 8
instructions (< 12.5%) if we wish to get full use from ALUs.
For quartics (with parameters) we chose through empirical testing, some
23% of instructions involve a DRAM operand, so throughput of an MP is
at halved at least, and in fact, this is observed.
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Summary

Take-Away Point

GPUs are good for cryptanalysis.

Devil is in the Details

Easy to get “working”, but hard to get “just right”.

Take-Away Point

For not-too-overdetermined F2 systems in the practical range, Brute Force
works better than F4 and other Gröbner basis solvers. This affects, for
example, security guarantees of QUAD-type stream ciphers.

Future

A full version will be uploaded to the ePrint Archive prior to journal
submission, and we may have packages for people to download and use.
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Thanks for Listening!

Questions or comments?

B.-Y. Yang et al (IIS-TWISC@Sinica) Brute-Forcing F2 Polynomial Systems Aug. 18, 2010 24 / 24


	Executive Summary
	Theory
	About the Gray Code Method
	Trade-offs

	Empirical Side
	On Commodity PCs
	GPU Implementation

	Discussion

