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Our Results

The Problem
Solve for n variables in Fo from m > n “generic” equations of low degree.

The Results: Generalized Gray Code Enumeration

@ Data for 48 vars and 48 to 64 equations below, with estimate in USD

to solve a Patarin IP challenge (64-64, quartic) in 1 month.

@ Beat all Grobner Bases solvers for practical sizes, generic case.

Time (minutes) Testing platform F£cores est. cost
d=2 ] d=3 [ d=4 |[ GHz | Arch. [ Name USD | (#used) (USD)
1217 | 2686 | 3191 2.2 K10 Phenom 9550 120 4(1) 54,000
1157 | 1992 | 2685 2.3 K104 | Opteron 2376 184 4(1) 113.316

142 240 336 2.3 K10+ | Opteron 2376x2 | 368 3(8) '
780 | 1364 | 1819 2.4 C2 Xeon X3220 210 4(1) 60,720
671 | 1176 | 1560 2.83 | C2+ Core2 Q9550 225 4(1) 55 575
179 294 390 2.83 | C2+ Core2 Q9550 225 4(4) '
761 | 1279 | 1856 2.26 | Ci7 Xeon E5520 385 4(1) 78.720

95 154 225 2.26 | Ci7 Xeon E5520x2 770 8(8) '

41 73 271 1.3 G200 GTX 280 n/a 240 n/a

21 36 126 1.25 | G200 GTX 295 500 480 15,500
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Exhaustive Search in degree d > 2 — Summary

@ Complexity of each iteration : () — 0(d g% p)
@ Internal state: 1 — (")

Headline (for all degree d > 2) J

Exhaustive search requires d XOR per candidate vector.

© Easy to implement efficiently
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Exhaustive Search in degree d > 2 — Summary

© Complexity of each iteration : (1) — O(d1g®(?) n)
@ Internal state: 1 — (")

Exhaustive search requires d XOR per candidate vector.

Headline (for all degree d > 2) J

© Easy-te-implementefficiently... (more on that later)

Q@ ...on GPUs too !

B.-Y. Yang et al (IIS-TWISC®Sinica) Brute-Forcing [Fp Polynomial Systems Aug. 18, 2010 4 /24



Naive Search for n [Fp-vars in m eqs of degree-d?

A deg = d equation over [ has (Z) terms at degree k for k < d.
o ~ m(}}) bit operations (OPs) per input, naively.
o~ 2(3) OPs per input if we compute serially and early-abort
o If logical operations are w-wide, we can bit-slice to speed up ~ wx

“Folklore” Gray Code Search

Define b;(x) := index of the i-th non-zero bit in binary representation of x
(—1 if no such), then standard Gray code: G(k) = G(k — 1) XOR 2b1(K),
With e; representing the unit vector in the i-th direction, define:

dif (x) := f(x + &) — f(x),
then identifying a codeword x with a vector in (F2)", we have
F(G(k)) = F(G(k = 1)) + dp, (i) F(G(k = 1)).

When f quadratic: differentials d;f's affine, can evaluate in time O(n).
Per-input time complexity down to O(n), no change in memory use.
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Recursive Gray Code Search

@ Every 2 iterations xg (lowest bit of Gray Code) flips.
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Recursive Gray Code Search

o It always goes: flip xg, flip some other x;, flip xp.

@ Hence, each time xp is flipped, the partial derivative to xy has last
been seen (evaluated) at an input 1 bit away.
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Recursive Gray Code Search

o It always goes: flip xp, flip some other x;, flip xg.

@ Hence, each time xp is flipped, the partial derivative to xg has last
been seen (evaluated) at an input 1 bit away.

@ x; (not low bit) always changes when the i bits below = 10---0, and
if we strike out the last i bits of a Gray Code sequence, we get Gray
Code with each entry repeated 2' times, and x; as new low bit.

@ Hence any differential w.r.t. x; also last evaluated 1 bit away.

@ Mathematical Induction pushes this to any higher degree.
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Recursive Gray Code Search

o It always goes: flip xp, flip some other x;, flip xg.

@ Hence, each time xp is flipped, the partial derivative to xg has last
been seen (evaluated) at an input 1 bit away.

@ x; (not low bit) always changes when the i bits below = 10---0, and
if we strike out the last i bits of a Gray Code sequence, we get Gray
Code with each entry repeated 2' times, and x; as new low bit.

@ Hence any differential w.r.t. x; also last evaluated 1 bit away.

@ Mathematical Induction pushes this to any higher degree.

Quadratic Example (with d;if(x) := d;f(x + ;) — d;f(x))
f(1) = f(0) = dof(0)
f(11) — (1) = dif(1) = dif(0) + do
f(10) — f(11) = dof(11) = dof(10) = dof(0) + do1
f(110) — f(10) = drf(10) = daf(0) + di2
f(111) — f(110) = dof(110) = dof(11) + do2
2 XORs/input = ...(n/2)x speedup, nx RAM use
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Part of 5-bit Gray Code Example Table

Note that the initial appearance of each § requires a setup.

index code by by b3 by actions(quadratic) actions(quartic)

00000 00000 -1 -1 -1 -1

00001 00001 o -1 -1 -1 § += & 5 += &

00010 00011 1 -1 1 -1 § += 61 5 += 61

00011 00010 0 1 -1 -1 § += (69 += Cg,1) & += (60 += 80,1)

00100 00110 2 -1 -1 -1 § += & § += &

00101 00111 0 2 -1 -1 5 += (59 += Co2) 5 += (80 += 60,2)

00110 00101 1 2 -1 -1 & += (61 += C12) 5 += (81 += 612)

00111 00100 0 1 2 -1 § += (59 += Co,1) § += (80 += (50,1 += 80,1,2))

01000 01100 3 -1 -1 -1 § += 83 5 += 683

01001 01101 0 3 -1 -1 § += (§g += Co,3) § += (89 += d0,3)

01010 01111 1 3 -1 -1 § += (61 += C1;3) 5 += (861 += 613)

01011 01110 0 1 3 -1 § += (§g += Co,1) § += (3o += (30,1 *+= 80,1,3))

01100 01010 2 3 -1 -1 § += (63 += Cp.3) 5 += (62 += 63.3)

01101 01011 0 2 3 -1 5 += (59 += Co2) 5 += (80 += (80,2 += 60,2,3))

01110 01001 1 2 3 -1 & += (61 += C12) § += (81 += (812 += 61,2.3))

01111 01000 0 1 2 3 § += (8o += Co,1) 6 += (89 += (39,1 *+= (do,1,2 += Co,1,2,3)))
10000 11000 4 -1 -1 -1 § += 684 5 += &4

10001 11001 0 4 -1 -1 § += (80 += Co,4) 5 += (80 += &p,4)

10010 11011 1 4 -1 -1 § += (61 += C14) 5 += (81 += 61,4)

10011 11010 0 1 4 -1 § += (§g += Co,1) § += (30 += (30,1 *+= 80,1,4))

10100 11110 2 4 -1 -1 § += (8 += Cp4) 8 += (62 += 62.4)

10101 11111 0 2 4 -1 & += (§g += Co,2) 5 += (30 += (30,2 *+= 80,2,4))

10110 11101 1 2 4 -1 & += (61 += C12) § += (81 += (812 += 61,2,4))

10111 11100 0 1 2 4 § += (60 += Cp,1) 5 += (§g += (80,1 += (d0,1,2 += Cp,1,2,4)))
11000 10100 3 4 -1 -1 § += (33 += C34) 5 += (33 += 63,4)

11001 10101 0 3 4 -1 § += (69 += Co,3) 5 += (8g += (80,3 += 80,3,4))

11010 10111 1 3 4 -1 § += (81 += C13) & += (81 += (51;3 += 51;3,4))

11011 10110 0 1 3 4 5 += (09 += Cp.1) 6 += (59 += (5g.1 += (80,13 += Cp,1,3.4)))
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Part of 5-bit Gray Code Example Table

Note that the initial appearance of each § requires a setup.

index code by by b3 by actions(quadratic) actions(quartic)
00000 00000 -1 -1 -1 -1

00001 00001 o -1 -1 -1 § += & § += &g

00010 00011 1 -1 -1 -1 § += 8, § += &1

00011 00010 0 1 -1 -1 5 += (59 += Co,1) 5 += (5o += 60,1)

00100 00110 2 -1 -1 -1 § += 68 5 += &

00101 00111 0 2 -1 -1 & += (60 += Co2) 5 += (8o += 80,2)

00110 00101 1 2 -1 -1 § += (61 += Cy2) § += (81 += 61,2)

00111 00100 0 1 2 -1 § += (80 += Co,1) § += (8o += (80,1 += 80,1,2))
01000 01100 3 -1 -1 -1 5 += 83 § += 83

01001 01101 0 3 -1 -1 § += (69 += Co,3) 5 += (60 += 60,3)

01010 01111 1 3 -1 -1 § += (81 += C13) § += (81 += 61,3)

01011 01110 0 1 3 -1 § += (69 += Co,1) § += (89 += (80,1 += 80,1,3))
01100 01010 2 3 -1 -1 § += (82 += C23) d += (32 += 62.3) !
01101 01011 0 2 3 -1 & += (6p += Cp2) § += (8g += (80,2 += 80,2,3))
01110 01001 1 2 3 -1 § += (61 += C12) § += (81 += (812 += 61,23))
01111 01000 0 1 2 3 6 += (89 += Cp 1) 6 += (59 += (8p,1 += (8g9.1,2 += Cp,1,2,3)))

Initialization Costs

When iy > i > - > iy, the differential d; ;... ; appears initially as

ak
(9X,'1 8X,'2 000 8x,-k

flen—1+e,—1+-+€—1)
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Partial (s-of-n) Evaluation

Substituting s variables out of n to get 2° subsystems in n — s variables.
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Partial (s-of-n) Evaluation

Substituting s variables out of n to get 2° subsystems in n — s variables.

Why Do We Need Partial Evaluation
@ Required for Parallel Processing
@ Convenient for memory management

@ Optimization (for Enumeration and Check)
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Partial (s-of-n) Evaluation

Substituting s variables out of n to get 2° subsystems in n — s variables.

Why Do We Need Partial Evaluation
@ Required for Parallel Processing
@ Convenient for memory management

@ Optimization (for Enumeration and Check)

Things to Note
@ Coeffs of deg-k terms are deg = d — k poly in the s vars.
@ Highest order coefficients are constant, can be shared.

@ Store coefficients of subsystems out to buffer DRAM, may require
two-stages if memory is limited (e.g., GPUs).

@ Basically same code as for enumeration
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Early Abort and Architectural Concerns

@ Machine test-for-0 on w-bit-wide word, does w ANDs + branch.
o Evaluating many egs. wastes less than not using machine instructions.
e So “enumerate” on (O ... f(W=1) then “check” 2"~ passers.
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Early Abort and Architectural Concerns

@ Machine test-for-0 on w-bit-wide word, does w ANDs + branch.
o Evaluating many egs. wastes less than not using machine instructions.
e So “enumerate” on (O ... f(W=1) then “check” 2"~ passers.

Complete Granularity: Enumeration and Partial Eval as One?

_ n pO)( o) o D) —
= teefony: /U@ = /) = f @) =0 If components of f(x) =0
i i-1 i . o
|T° compute VO from V@) for eachi | are filters, what is the best

#tvars to partially evaluate

Step 1. b
from the equation £()?

partial evaluate f (V
with suitable s;

Step 2.
evaluate f (V) by substituting v eV (7

into the corresponding subsystem
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Early Abort and Architectural Concerns

@ Machine test-for-0 on w-bit-wide word, does w ANDs + branch.
o Evaluating many egs. wastes less than not using machine instructions.
e So “enumerate” on (O ... f(W=1) then “check” 2"~ passers.

Complete Granularity: Enumeration and Partial Eval as One?

_ n pO)( o) o D) —
= teefony: /U@ = /) = f @) =0 If components of f(x) =0
i i-1 i . o
|T° compute VO from V@) for eachi | are filters, what is the best

#tvars to partially evaluate
from the equation £()?

d _
Needs (2 i (7 s))
times 275 in V() .
Plus must partial evaluate

2% times 27:0(”—1') (nJ_'S)

Step 1. .
partial evaluate f (V
with suitable s;

Step2. v i (nyn,n—1,...,0,...)
evaluate f "(V) by substituting VeV is generally good if we
into the corresponding subsystem search for some good ;.

v
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Early Abort and Architectural Concerns

@ Machine test-for-0 on w-bit-wide word, does w ANDs + branch.
o Evaluating many egs. wastes less than not using machine instructions.
e So “enumerate” on (O ... f(W=1) then “check” 2"~ passers.

Complete Granularity: Enumeration and Partial Eval as One?

V= {x € {0,1}": fO) =[O (@)= = V() =0}

|To compute VO from V@D for each i |

If components of f(x) =0
are filters, what is the best
#tvars to partially evaluate
from the equation £()?

d _
Needs (2 i (7 s))
times 275 in V() .
Plus must partial evaluate

2% times Zf:o(”_j) (nJ_'S)

Step 1. .
partial evaluate f (V
with suitable s;

Step2. v i (nyn,n—1,...,0,...)
evaluate f "(V) by substituting VeV is generally good if we
into the corresponding subsystem search for some good ;.

“optimal” is (n,n,n—4,n—¢—1,..., h+1, hO0,...,0) for small (h,?).
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Check vs Enumerate

Changing check width

If per-input cost to enumerate is ¢, cost to check (verify) v, width w, and
we want to change the width to w’ < w, then we must check

? /
c+2Wv>cd+27V

?
if W < w, it simplifies to checking ¢ — ¢’ > 27"V
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Check vs Enumerate

Changing check width

If per-input cost to enumerate is ¢, cost to check (verify) v, width w, and
we want to change the width to w’ < w, then we must check

? /
c+2Wv>cd+27"V

?
if W < w, it simplifies to checking ¢ — ¢/ > 2%V

CPU with SSE2 instructions: Optimal Width=16

With SSE2, all widths are powers of two. Assuming that w/ = w/2 and
¢’ = ¢/2, then it is better to use w’-wide if v/ < 2% .
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Check vs Enumerate

Changing check width

If per-input cost to enumerate is ¢, cost to check (verify) v, width w, and
we want to change the width to w’ < w, then we must check

? /
c+2"v>cd+27vYV

?
if W < w, it simplifies to checking ¢ — ¢’ > 2%V

CPU with SSE2 instructions: Optimal Width=16

With SSE2, all widths are powers of two. Assuming that w/ = w/2 and

¢’ ~ ¢/2, then it is better to use w'-wide if v/ < o' ¢l

In all our tests when w’ = 16, v/ is about 400, 1500, and 5000 cycles for
degrees 2, 3, 4 respectively, and ¢’ on Intel CPUs is around 0.4, 0.7, 0.9

cycles respectively (with AMD CPUs slower by up to a factor of 2).
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Check vs Enumerate

Changing check width

If per-input cost to enumerate is ¢, cost to check (verify) v, width w, and
we want to change the width to w’ < w, then we must check

? /
c+2 Wy >cd+27"V

?
if w < w, it simplifies to checking ¢ — ¢/ > 2""'V/.

CPU with SSE2 instructions: Optimal Width=16

With SSE2, all widths are powers of two. Assuming that w’ = w/2 and
¢’ ~ c/2, then it is better to use w'-wide if v/ < 2%’ ¢’.

In all our tests when w’ = 16, v/ is about 400, 1500, and 5000 cycles for
degrees 2, 3, 4 respectively, and ¢’ on Intel CPUs is around 0.4, 0.7, 0.9
cycles respectively (with AMD CPUs slower by up to a factor of 2).
Since 219 < v/ /¢’ < 2% in all cases, this points to our checking w’ = 16
equations at a time being better than either 32 or 8.

v
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Our Programs

Three Stages
@ Partial Evaluation: at least partly done on the CPU.
@ Enumerate: this accounts for more than 90% of runtime.

@ Checking: always done on the CPU.

Code Generation

We have perl scripts that generate the programs given some parameters,
which are very regular and straight-line code, for both GPU and CPU.
These generated programs also capture our ideas about memory space
allocation and register spilling, etc.
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Vector Code on Modern x86-64 CPUs

The SSE2 Instruction Set

@ SSE2 instruction let you act in parallel on 8-, 16-, 32-, or 64-bit
chunks simultaneously. Here we do 8 chunks at a time.

@ Turns out that more than SSE2 instruction set does not help much.

@ Intel Core's can dispatch 3 operations on XMM registers per cycle,
AMD CPUs only 2.

@ Since we are working with more than 1 entries in an XMM register, it
takes extra work to extract, particularly the PMOVMSKB instruction.

@ Caches are basically large enough and good enough to mask the
latencies except on the old version of the K10.
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Vector Code on Modern x86-64 CPUs

The SSE2 Instruction Set

@ SSE2 instruction let you act in parallel on 8-, 16-, 32-, or 64-bit
chunks simultaneously. Here we do 8 chunks at a time.

@ Turns out that more than SSE2 instruction set does not help much.

@ Intel Core's can dispatch 3 operations on XMM registers per cycle,
AMD CPUs only 2.

@ Since we are working with more than 1 entries in an XMM register, it
takes extra work to extract, particularly the PMOVMSKB instruction.

@ Caches are basically large enough and good enough to mask the
latencies except on the old version of the K10.

Notes
@ Branches are relatively cheap, so we use them instead of conditionals.

@ s is smaller than for GPUs since we do not need as many threads.
But for both CPUs and GPUs, s increase roughly linear as n.
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Performance Testing on PCs

Timing (mins) and Cycle counts at n = 48, m = 64

deg =2 deg =3 deg =4 CPU
kernel | cycle || kernel | cycle || kernel | cycle || GHz | arch
1217 | 0.57 2686 | 1.26 || 3191 | 1.50 || 2.2 | K10
1157 | 0.57 1992 | 0.98 || 2685 | 1.32 || 2.3 | K10+
780 | 0.40 1364 | 0.70 1819 | 0.93 || 24 | C2
671 | 0.41 1176 | 0.71 1560 | 0.94 || 2.83 | C2+
761 | 0.37 1279 | 0.62 1856 | 0.89 || 2.26 | Ci7
Notes
@ Cycle count is almost strictly a function of arch
@ scaling with any modern core is almost perfect |
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Performance Testing on PCs

Timing (mins) and Cycle counts at n = 48, m = 64

deg =2 deg =3 deg =4 CPU
kernel | cycle || kernel | cycle || kernel | cycle || GHz | arch

1217 | 057 || 2686 | 1.26 || 3191 | 1.50 || 2.2 | K10
1157 | 0.57 || 1992 | 0.98 || 2685 | 1.32 || 2.3 | K10+

142 | 0.56 240 | 0.94 336 | 1.32 x8 Cores

780 | 0.40 || 1364 | 0.70 || 1819 | 0.93 || 24 | C2

671 | 0.41 | 1176 | 0.71 | 1560 | 0.94 || 2.83 | C2+

761 | 0.37 || 1279 | 0.62 || 1856 | 0.89 || 2.26 | Ci7

Notes

@ Cycle count is almost strictly a function of arch

@ scaling with any modern core is almost perfect
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Sample Code

C Intrinsics Code

diff0 "= deg2_block[ 1 1;

res

Mask =

mask

diffo;
_mm_cmpeq_epil6(res, zero);
_mm_movemask_epi8(Mask) ;

if (mask) check(mask, idx, x~155);
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Sample Code

C Intrinsics Code

diff0 "= deg2_block[ 1 1;

res ~= diff0;
Mask = _mm_cmpeq_epil6(res, zero);
mask = _mm_movemask_epi8(Mask) ;

if (mask) check(mask, idx, x~155);

Assembly Code

.L746:
movq
pxor
pxor
pxor
pcmpeqw
pmovmskb
testw
jne

LL747:

976 (%rsp), hrax //

(hrax), %xmm2 //
%xmm2, Y%xmmi //
%xmm0, %xmmO //
Y%xmm1, %xmmO //
%xmm0, %eax //
%hax, hax //
.L1266 //

//

d_y "= C_yz
res "= d_y

cmp words for eq
movemask

set flag for branch
if needed, check and
comes back here

B.-Y. Yang et al (IIS-TWISC®Sinica)
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Performance Analysis

Instruction counts
@ For quadratics 2 XORs, then 1 COMPARE, then a PMOVMSKB, then a
test-and-branch. Hence, 6 instructions including 3 XMM loads. Ideal
value is 3 cycles/loop. Actual value is slightly higher.

@ For cubics/quartics, 7/8 XMM instructions respectively.
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Performance Analysis

Instruction counts
@ For quadratics 2 XORs, then 1 COMPARE, then a PMOVMSKB, then a

test-and-branch. Hence, 6 instructions including 3 XMM loads. Ideal
value is 3 cycles/loop. Actual value is slightly higher.

@ For cubics/quartics, 7/8 XMM instructions respectively.

Comparison to PS3
Version used for cryptanalysis is sold at a subsidy (US$300)

@ 6% 3.2GHz synergetic processing elements (SPEs) usable,
@ each SPE does 128-bit wide logical OP/cycle in main pipeline,
@ with a secondary pipeline to handle bookkeeping.

Hence max. 6x 3.2GHz 128-bit OPs. |
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Performance Analysis

Instruction counts
@ For quadratics 2 XORs, then 1 COMPARE, then a PMOVMSKB, then a
test-and-branch. Hence, 6 instructions including 3 XMM loads. Ideal
value is 3 cycles/loop. Actual value is slightly higher.

@ For cubics/quartics, 7/8 XMM instructions respectively.

Comparison to PS3

Version used for cryptanalysis is sold at a subsidy (US$300) max. 6x
3.2GHz 128-bit OPs.

The competition
@ AMD K10+ can do 4 core x 2 = 8 XMM OPs/cycle.
o Intel Quad Core's can do 4 core x3 = 12 XMM OPs/cycle.

@ The K10+ has utilization ratio ~ 7/8, So a 3.2GHz Phenom |Ix4 (or
2.66GHz Ci7) always beats a Cell.

v
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nVidia G200 GPU on GeForce GTX 280 / Tesla C1060

470 mm?, TDP: 204 watts (TSMC 55nm), >1.4 bil transistor, w. ~ 1GB DRAM

1062.72 GFLOPS (single-precision), 159 GB/s mem bandwidth vs. 106.56
GFLOPS, 25.6 GB/s of Intel Core i7 at 3.33 GHz

@ 30 "Multiprocessors” (MPs, Real Units of GPU Computing)

8 ALUs, each can do 1 FMADD/cycle @ 1.296GHz

2 Special Function Units, each 2 actions/cycle (incl. FMUL)

16k registers (each 32bits), 16kB shared memory

8kB constant cache into 64kB constant area

Latency: 22-26 cycles from SRAM 20 cycles, > 400 cycles from DRAM.
Opportunitistic but in-order dispatcher, 1 64-bit instruction decode per
4 cycles, > 128 lightweight hardware threads (4 “warps”) needed for
performance. We don’t even mention the Magic Textile Units.

@ How to Program with CUDA

Program in C-like language *. cu file

Compile with nvce to pseudomachine code (*.ptx).

Load with nVidia driver, load/launch from the main program.

Buggy compiler and can only jump to first 16k instructions (!).

vV VY VY VY VY

vV vy VvYyy
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GPU Code and Performance Analysis
2.6 SP cycles for quadratics

diff0 "= deg2_block[ 3 1; // d_y =d_yz

res "= diff0; // res~=d_y
if( res == 0 ) y = z; // cmov
if( res == 0 ) z = code233; // cmov

diff1 ~= deg2_block[ 4 ]1;
res "= diff1l;

if( res == 0 ) y = z;

if( res == 0 ) z code234;
diff0 ~= deg2_block[ 0 ]1;
res “= diffo0;

if( res == 0 ) y = z;

if( res == 0 ) z code235;

The “if (X=0) Y=Z;" bit is actually the magic words to emit a
predicated move, a 32-bit “half instruction”.
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GPU Code and Performance Analysis

2.6 SP cycles for quadratics

The inner loop has 5-6 instructions but < 3 cycles, clearly the SFU can
dispatch some instructions, very well.

xor.b32 $r19, $r19, c0[0x000c] // d_y~=d_yz
xor.b32 $p1|$r20, $ri7, $r20

mov.b32 $r3, $ri

mov.b32 $r1, s[$ofs1+0x0038]

xor.b32 $r4, $r4, c0[0x0010]

xor.b32 $p0|$r20, $r19, $r20 // res~=d_y
@$pl.eq mov.b32 $r3, $ril

@$pl.eq mov.b32 $r1, s[$ofs1+0x003c]

xor.b32 $r19, $r19, c0[0x0000]

xor.b32 $p1|$r20, $r4, $r20

@$p0.eq mov.b32 $r3, $ril // cmov
@$p0.eq mov.b32 $r1, s[$ofs1+0x0040] // cmov

Switching to predicated branch instead of predicated move makes each
input take some 3.5 cycles on average!
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CPU vs GPU

Need to rerun a thread

Due to artifacts of GPU programming, threads return “no possible

solution”, “one possible solution”, and “too many possible solutions”. The
last is rerun completely on CPU.
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CPU vs GPU

Need to rerun a thread

Due to artifacts of GPU programming, threads return “no possible
solution”, “one possible solution”, and “too many possible solutions”. The
last is rerun completely on CPU.

GPU Thread-Checking Probability

If we have n variables, pre-evaluate s, and check w equations via Gray
Code, then the probability of a subsystem with 2"~° vectors including at
least two candidates ~ (¥}, 7)(1 —27%)%" *(27%)? & 1/22(stwon)+1
provided that n < s + w.
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CPU vs GPU

Need to rerun a thread

Due to artifacts of GPU programming, threads return “no possible
solution”, “one possible solution”, and “too many possible solutions”. The
last is rerun completely on CPU.

GPU Thread-Checking Probability

If we have n variables, pre-evaluate s, and check w equations via Gray
Code, then the probability of a subsystem with 2"~° vectors including at
least two candidates ~ (¥}, 7)(1 —27%)%" *(27%)? & 1/22(stwon)+1
provided that n < s + w.

Example

For n = 48, s = 22, w = 32, the thread-recheck probability is about 1 in
213 and we must re-check about 2° threads (using Gray Code).
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CPU vs GPU

Need to rerun a thread

Due to artifacts of GPU programming, threads return “no possible
solution”, “one possible solution”, and “too many possible solutions”. The
last is rerun completely on CPU.

GPU Thread-Checking Probability

If we have n variables, pre-evaluate s, and check w equations via Gray
Code, then the probability of a subsystem with 27~° vectors including at
least two candidates ~ (¥}, 7)(1 —27%)%" *(27%)? & 1/22(stwon)+1
provided that n < s + w.

Example

For n = 48, s = 22, w = 32, the thread-recheck probability is about 1 in
213 and we must re-check about 2° threads (using Gray Code).

It gains little with conditionals (a packed SUBTRACT update a counter
then 3 bookkeeping instructions, still 3 loads) over branching on CPU and
a thread-check is expensive, hence the latter.
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Performance Comparison at 32 variables, 64 equations

Cycle Counts (SP vs core)

deg C2 | C2+ | K10 | K10+ | Ci7 || GTX280 | GTX295
2 0.40 | 0.40 | 0.58 0.57 | 0.41 2.87 2.93
3 0.65 | 0.66 | 1.21 0.91 | 0.66 4.66 4.90
4 0.95 | 0.96 | 1.41 1.32 | 1.00 15.01 14.76
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Performance Comparison at 32 variables, 64 equations

Cycle Counts (SP vs core)
deg C2 | C2+ | K10 | K10+ | Ci7 || GTX280 | GTX295

2 0.40 | 0.40 | 0.58 0.57 | 0.41 2.87 2.93
3 0.65 | 0.66 | 1.21 0.91 | 0.66 4.66 4.90
4 0.95 | 0.96 | 1.41 1.32 | 1.00 15.01 14.76

2.66GHz Core i7 vs 1.242GHz GT200 GPU
e For quadratics, 1 Core i7 &~ 15.25P < 2MP
@ For cubics, 1 Core i7 ~ 16.6SP = 2MP
@ For quartics 1 Core i7 ~ 38.45P =~ 4.8MP
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Performance Comparison at 32 variables, 64 equations

Cycle Counts (SP vs core)

deg C2 | C2+ | K10 | K10+ | Ci7 || GTX280 | GTX295
2 0.40 | 0.40 | 0.58 0.57 | 0.41 2.87 2.93
3 0.65 | 0.66 | 1.21 0.91 | 0.66 4.66 4.90
4 0.95 | 0.96 | 1.41 1.32 | 1.00 15.01 14.76

2.66GHz Core i7 vs 1.242GHz GT200 GPU

@ For quadratics, 1 Core i7 &~ 15.25P < 2MP

@ For cubics, 1 Core i7 ~ 16.65P = 2MP

e For quartics 1 Core i7 = 38.45P ~ 4.8MP

Why is quartics so different?
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GPU Memory Pressure Partly Explained

Each thread on a G200b has less than 150 “slots” of 32-bit fast SRAM
space (registers and shared memory) to store the differentials. So they
must inevitably overflow (spill) to slow DRAM (“local memory").
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GPU Memory Pressure Partly Explained

Each thread on a G200b has less than 150 “slots” of 32-bit fast SRAM
space (registers and shared memory) to store the differentials. So they
must inevitably overflow (spill) to slow DRAM (*“local memory").

Frequency of Differential Access

The differential d;,~j,>...~;, is accessed once every 21+ inputs. We
allocate the most often used differentials to fast SRAM memory and read
the remaining from slow DRAM.

Each MP with 8 ALUs (SPs) can potentially dispatch 8 instruction per
cycle or more, but the DRAM controllers can only load once every cycle to
each MP. Hence, we can have at most one DRAM load out of every 8
instructions (< 12.5%) if we wish to get full use from ALUs.
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GPU Memory Pressure Partly Explained

Each thread on a G200b has less than 150 “slots” of 32-bit fast SRAM
space (registers and shared memory) to store the differentials. So they
must inevitably overflow (spill) to slow DRAM (“local memory").

Frequency of Differential Access

The differential 0;,~/,>...>;, is accessed once every 21+ inputs. We
allocate the most often used differentials to fast SRAM memory and read
the remaining from slow DRAM.

Each MP with 8 ALUs (SPs) can potentially dispatch 8 instruction per
cycle or more, but the DRAM controllers can only load once every cycle to
each MP. Hence, we can have at most one DRAM load out of every 8
instructions (< 12.5%) if we wish to get full use from ALUs.

For quartics (with parameters) we chose through empirical testing, some
23% of instructions involve a DRAM operand, so throughput of an MP is
at halved at least, and in fact, this is observed.

B.-Y. Yang et al (IIS-TWISC®Sinica) Brute-Forcing Fy Polynomial Systems Aug. 18, 2010 21 /24



Summary

Take-Away Point

GPUs are good for cryptanalysis.
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Summary

Take-Away Point

GPUs are good for cryptanalysis and easier than FPGAs.

Devil is in the Details

Easy to get “working”, but hard to get “just right”.
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Summary

Take-Away Point
GPUs are good for cryptanalysis and easier than FPGAs.

Devil is in the Details
Easy to get “working”, but hard to get “just right”.

Take-Away Point

For not-too-overdetermined F, systems in the practical range, Brute Force
works better than F4 and other Grobner basis solvers. This affects, for
example, security guarantees of QUAD-type stream ciphers.
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Summary

Take-Away Point
GPUs are good for cryptanalysis and easier than FPGAs.

Devil is in the Details
Easy to get “working”, but hard to get “just right”.

Take-Away Point

For not-too-overdetermined F, systems in the practical range, Brute Force
works better than F4 and other Grobner basis solvers. This affects, for
example, security guarantees of QUAD-type stream ciphers.

Future

A full version will be uploaded to the ePrint Archive prior to journal
submission, and we may have packages for people to download and use.

v

B.-Y. Yang et al (IIS-TWISC®Sinica) Brute-Forcing [Fp Polynomial Systems Aug. 18, 2010 22 /24



Credits
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Also many thanks to Ming-Shing Chen for general support.
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Thanks for Listening!

@ Questions or comments?
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