

RUHR-UNIVERSITÄT BOCHUM

Correlation-Enhanced Power Analysis Collision Attack 18. August 2010

Amir Moradi, Oliver Mischke, Thomas Eisenbarth

Embedded Security Group, Ruhr University Bochum, Germany Florida Atlantic University, USA

Outline

- How did we start it?
- Implementation
- Finding Leakages
- A new Attack
- Conclusions

What is the story?

- It comes from a project
 - 1st order resistant lightweight implementation of AES for FPGA/ASIC
- Looking into the literatures
 - smallest masked AES S-box by Canright and Batina
- Implementation
 - Attacks
 - HD/HW models did not work (as expected)

1st Order Leakage of Masking in Hardware

- Usually cannot be exploited by HD/HW models
- Zero-Value model sometimes works
- Toggle-Count Model
- of course, MIA
- We all know why → glitches

An Overview of the Architecture

More Evaluation

Zero-Value Attack worked very well (10K traces)

 more concentration of the masked S-box, keeping the hierarchy levels, avoiding any optimization,...(1M traces)

More Evaluation?

- Templates? (without knowing the key?)
 - First, averaging based on plaintext bytes
 - 256 mean traces for each plaintext byte
 - Variance over mean traces (each plaintext byte separately)

Something depends on plaintext bytes

Designing an Attack

 Supposing knowing a key byte, we get mean traces for the corresponding plaintext byte

For another plaintext byte (unknown key), we get mean traces

How are these mean traces related to each other?

Designing an Attack

Designing an Attack

- The mean traces for the unknown key bytes can be generated for each key byte hypothesis
- The correct key byte can be found comparing the mean traces at each time instance
 - Correlation helps here!
 - Correlation of two sets of mean traces based on key hypothesis (is almost 1 for right key (due to equal power consumption))

Extending the Attack

- If the first key byte (for the first mean traces) is not known, what we recover is the linear difference between two key bytes: k_1+k_2 , because of addroundkey of AES
 - Linear correlation attack on AES but using all possible collisions!
- Number of required traces?

Comparisons?

2nd order attack (zero-offset 2DPA), 8M traces required

MIA, ~ 200K traces required

Why does it work?

- There is one instance of S-box in an 8-bit architecture
 - The power consumption characteristics of the same instance of the S-box is used in mean traces
 - Power consumption of an instance of the S-box is compared to itself in different clock cycles
- What does happen for larger architecture?
 - The same netlist for the S-boxes, even the same placement and routing, but still process variations exists
 - Small differences on power consumption characteristics of different instances of the S-box
 - The same instances of the S-box should be compared

Larger Architectures

- 32-bit architecture
 - Increased noise → more traces (in our case ~ 10 times)
- 128-bit (round-based) implementation
 - Crypto LSI by SASEBO's
 - Efficiency of the attack depends on the similarity of power consumption characteristics of different instances of the S-box

The gain of the attack

- Relation between key bytes
 - 8-bit arch. → 15 relations, 2⁸ candidates for the 128-bit key
 - − 32-bit arch. \rightarrow 12 relations, 2^{32} candidates for the 128-bit key
- How to get the correct key?
 - A pair of plain-/ciphertext
 - Continue the attack on the second round of the AES for each key candidate

First Conclusion

- The implemented masking scheme has a 1st order leakage
 - because of an implementation error!
 - glitches should be prevented
 - HOW?
 - Control signals?
 - toward logic styles
 - algorithmically-masked AES S-box implemented by a masked logic styles, e.g., (i)MDPL
 - The circuit grows incredibly

Presence of other Countermeasures

- Shuffling?
 - noise addition → more traces
 - Combing → keeping the # of traces still low
- Logic Styles?
 - tested on an iMDPL chip (32-bit arch.)
 - around 200K traces are enough to get the full key
 - also an Crypto LSI by SASEBO's (MAO, MDPL, WDDL 128-bit arch.)
 - Something between 100K-200K traces are enough
- Any kind of 1st order leakage can be detected given enough traces to estimate the means

Can the attack be applied to other algorithms?

- A general scheme is presented in an eprint version http://eprint.iacr.org/2010/297
 - any kind of 1st order leakage can be exploited (works better if same instances of combinational function (S-box) are repeatedly used)
 - again, it can recover the relation between key portions (bytes, nibbles, etc)

Thanks! Any questions?

Embedded Security Group, Ruhr University Bochum, Germany Florida Atlantic University, USA

