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Elliptic Curve Cryptography

m Invented [independently] by Neil Koblitz and Victor Miller in
1985

m Useful for key exchange, encryption and digital signature
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Scalar Multiplication

Definition

Given scalar k and a point P, compute [K|[P=P+P+---+P
—_————

k times

ECDLP Given P and Q = [K|P, recover k
m no subexponential algorithms are known to solve the ECDLP
(in the general case)
m smaller key sizes can be used

Bit security
80 112 128 192 256
ECC 160 224 256 384 512
RSA 1024 2048 3072 8192 15360
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This Talk

Goal

Implementation of the Montgomery ladder and of its dual version
using efficient co-Z formulae

m binary scalar multiplication algorithms
m suitable for memory-constrained devices
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Outline

Kl Arithmetic on Elliptic Curves
m Jacobian coordinates
m Co-Z point addition

Binary Scalar Multiplication Algorithms
m Left-to-right methods
m Right-to-left methods

New Implementations
m Binary ladders with co-Z trick
m Point double-add operation

Discussion
m Performance analysis
m Security analysis
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Elliptic Curves

WeierstraB equation (affine coordinates)

Let E : y? = x3 +ax + b define over Fy (char # 2,3) with discriminant
A= —16(4a*+27b%) £0

%

R =(x3,53)

(a) Addition: P+Q = R. (b) Doubling: P+ P= R.
technicolor
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Jacobian Coordinates

m To avoid computation of inverse in [Fq
m affine point (x,y) — projective point (X : Y : Z) such that
x=X/Z?andy=Y/Z3

WeierstraB equation (projective Jacobian coordinates)

Let E: Y2 = X3+ aXZ* + bZ® define over Fq (char # 2,3) with
discriminant A = —16(4a’+27b%) #0

m Point at infinity 0= (1:1:0)
| |fP:(X1 Yy :Z1)eEthen —P:(X1 c—Yq ZZ1)
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Co-Z Point Addition (ZADD)

m Introduced by Meloni  [WAIFI 2007]
m Addition of two distinct points with the same Z-coordinate

Co-Z point addition

Let P = (X1 Yy :Z) and Q = (XZ 1Yy Z) Then P+Q = (X3 1 Ys3: Z3)
where

X3=D—-Wi—Wa, Y3=(Y1-Y2)(W1i—-X3)— Ay, Z3=2(X1—X3)

with A= Y1(W1 = Wz), Wi =X1C, W =X;C, C= (X1 —Xz)z and
D=(Y;-Y;)?

m Cost of ZADD: 5M +2S
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Co-Z Point Addition with Update (ZADDU)

m Main advantage of Meloni’s addition

Equivalent representation of P
Evaluation of R =ZADD(P,Q) yields for free

P = (X1 (X1 —X2)2: Ya(Xs —X2)3 1 Z3) = (Wy : Ay : Z3) ~ P
that is, Z(P') = Z(R)

m Notation: (R,P’) =ZADDU(P,Q)
m Cost of ZADDU: 5M +2S

technicolor

9z e n




Outline

Binary Scalar Multiplication Algorithms
m Left-to-right methods
m Right-to-left methods
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Left-to-Right Methods

Algorithm 1 Left-to-right binary method

Algorithm 2 Montgomery ladder

Input: Pc E(Fg) and k= (kp_1,....ko)2 €N Input: Pc E(Fq) and k= (kp_1,...,kg)2 €N
Output: Q = kP Output: Q = kP

1:R0(—O;R1<—P 1!R0<—0;R1<—P

2: fori=n—1down to 0 do 2: for i=n—1 down to 0 do

3 Ro < 2Rg 3 b+ kij; Ri_p < Ri_p+Rp

4:  if (k;=1) then Ry < Ro + Ry 41 Ry« 2R,

5: end for 5: end for

6: return Ry 6: return Ry

m Subject to SPA-type attacks

m Inserting dummy addition
prevents SPA

m subject to safe-error
attacks

m Regular structure, no dummy
operations

m Naturally resistant against
SPA and safe-error attacks

m 2 registers

technicolor
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Right-to-Left Methods

Algorithm 3 Right-to-left binary method

Algorithm 4 Joye’s double-add

Input: Pc E(Fg) and k= (kp_1,....ko)2 €N Input: Pc E(Fq) and k= (kp_1,...,kg)2 €N
Output: Q = kP Output: Q = kP

1:R0(—O;R1<—P 1!R0<—0;R1<—P

2: fori=0ton—1do 2: fori=0ton—1do

3 if (k; = 1) then Ry < Rg + R4 3 b « ki

4: Ry < 2R4 4: Ri_p < 2R1_p+Rp

5: end for 5: end for

6: return Ry 6: return Ry

m Idem left-to-right method

(SPA-type attacks, safe-error
attacks)

m Idem Montgomery ladder

(regular structure, no dummy
operations, 2 registers)
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Outline

New Implementations
m Binary ladders with co-Z trick
m Point double-add operation
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Conjugate co-Z Point Addition (ZADDC)

m New co-Z point operation
m using caching techniques

Conjugate co-Z point addition

From —Q = (X3 : —Y3: Z;), evaluation of R=ZADD(P,Q) allows one
to get S:=P—-Q = (X3,Y3,Z3) where

Xz=(Y1+Y)2 =Wy =Wy, V3= (Y1 +Yy)(Ws—X3)
with an additional cost of 1M+ 1S

m Notation: (P+Q,P—Q)=ZADDC(P,Q)
m Total cost of ZADDC: 6M -+ 3S
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Left-to-Right Binary Ladder With co-Z Trick

Algorithm 5 Montgomery ladder with co-Z formulae
Input: P E(Fg) and k= (ky_1,...,ko)2 €N
Output: Q = kP
: Ro — 0; R1 ~—P
: fori=n—1down to 0 do
b <+ ki; Ri_p < Ri_p +Rp
Rb — ZRb
end for
return Ry

o U1l AN W N =
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Left-to-Right Binary Ladder With co-Z Trick

Algorithm 5 Montgomery ladder with co-Z formulae
Input: P E(Fy) and k= (kp_1,...,ko)2 € N with k, 1 =1
Output: Q = kP
: Ro — P; (R1 ,Ro) — DBLU(Ro)
: fori=n—2 down to 0 do
b <+ ki; Ri_p < Ri_p +Rp
Rb — ZRb
end for
return Ry

o U1l N W N =

(2P.P’) = DBLU(P) where P’ ~ P and Z(P') = Z(2P)
Cost: 1M +5S
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Left-to-Right Binary Ladder With co-Z Trick

Algorithm 5 Montgomery ladder with co-Z formulae
Input: P E(Fy) and k= (kp_1,...,Kko)2 € N with k,_1 =1
Output: Q = kP
: Ro — P; (R1 ,Ro) — DBLU(Ro)
: fori=n—2 down to 0 do
b <+ ki; Ri_p <+ Ry_p +Rp
Rb — ZRb
end for
return Ry

o U1l N W N =

T(—Rb—R1_b
R1_b — Rb +R1_b; Rb — R1_b+T (= ZRb)
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Left-to-Right Binary Ladder With co-Z Trick

Algorithm 5 Montgomery ladder with co-Z formulae
Input: P E(Fy) and k= (kp_1,...,Kko)2 € N with k,_1 =1
Output: Q = kP
: Ro — P; (R1 ,Ro) — DBLU(Ro)
: fori=n—2 down to 0 do
b+ k,'; (R1—b:Rb) — ZADDC(Rb,R1_b)
(Rp,R1-p) <— ZADDU(R1_p.Rp)
end for
return Ry

o U1l N W N =

T(—Rb—R1_b
R1_b — Rb +R1_b; Rb — R1_b+T (= ZRb)
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Left-to-Right Binary Ladder With co-Z Trick

Algorithm 5 Montgomery ladder with co-Z formulae
Input: P E(Fy) and k= (kp_1,...,Kko)2 € N with k,_1 =1
Output: Q = kP
: Ro — P; (R1 ,Ro) < DBLU(Ro)
: fori=n—2 down to 0 do
b+ k,'; (R1—b’Rb) — ZADDC(Rb,R1_b)
(Rb.R1_b) ¢ ZADDU(Ry_p.Rp)
end for
return Ry

o U1l N W N =

m Cost per bit: (6M+3S)+ (5M+2S) = 11M+5S
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Right-to-Left Binary Ladder With co-Z Trick

Algorithm 6 Joye’s double-add with co-Z formulae
Input: P E(Fg) and k= (ky_1,...,ko)2 €N
Output: Q = kP

1: Ro — 0; R1 ~—P

2: fori=0ton—1do

3 b+ k;;
4: Ri_p < 2Ri_p+Rp
5
6

: end for
: return Ry
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Right-to-Left Binary Ladder With co-Z Trick

Algorithm 6 Joye’s double-add with co-Z formulae
Input: P E(Fy) and k= (kp_1,...,Ko)2 € N with kg =1
Output: Q = kP

1: Rp +—P; Ry < P

2: fori=1ton—1do

3 b+ k;;
4: Ri_p < 2Ri_p+Rp
5
6

: end for
: return Ry

Ry and Ry now have the same Z-coordinate but are not different (!)
— start for-loop at i =2
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Right-to-Left Binary Ladder With co-Z Trick

Algorithm 6 Joye’s double-add with co-Z formulae
Input: P E(Fg) and k= (kp_1,...,Ko)2 € N with kg =1
Output: Q = kP

1: b < kq; Rp < P; (Ry_p,Rp) < TPLU(Rp)

2: fori=2ton—1do

3 b+ k;;
4: Ri_p < 2Ri_p+Rp
5
6

: end for
: return Ry

(3P,P') = TPLU(P) where P’ ~P and Z(P') = Z(3P)
Cost: 6M+7S
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Right-to-Left Binary Ladder With co-Z Trick

Algorithm 6 Joye’s double-add with co-Z formulae
Input: P E(Fg) and k= (kp_1,...,Ko)2 € N with kg =1
Output: Q = kP

1: b < kq; Rp < P; (Ry_p,Rp) < TPLU(Rp)

2: fori=2ton—1do

3 b+ k;;
4: Ri_p < 2R1_p +Rp
5
6

: end for
: return Ry

Can be rewrittenas T < Ry_p+Rp; Ri_p < T +Ry_p
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Right-to-Left Binary Ladder With co-Z Trick

Algorithm 6 Joye’s double-add with co-Z formulae
Input: P E(Fg) and k= (kp_1,...,Ko)2 € N with kg =1
Output: Q = kP

1: b < kq; Rp < P; (Ry_p,Rp) < TPLU(Rp)

2: fori=2ton—1do

3 b+« ki; T+ Ri_p+Rp

4: Ri_p < T+Ri_p
5
6

: end for
: return Ry

(T,R1-p) < ZADDU(R1_p,Rp); (R1_p,T) < ZADDU(T,Ry_p)
+ update of R, (cost: 3M)
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Right-to-Left Binary Ladder With co-Z Trick

Algorithm 6 Joye’s double-add with co-Z formulae
Input: P E(Fg) and k= (kp_1,...,Ko)2 € N with kg =1
Output: Q = kP

1: b < kq; Rp < P; (Ry_p,Rp) < TPLU(Rp)

2: fori=2ton—1do

3 b+« ki; T+ Ri_p+Rp

4: Ri_p < T+Ri_p
5
6

: end for
: return Ry

(T,Ri_p) < ZADDU(Ry_p,Rp); (Ry—p,Rp) <— ZADDC(T,Ry_p)
since T—Ry_p =Rp

technicolor

2 e ‘W




Right-to-Left Binary Ladder With co-Z Trick

Algorithm 6 Joye’s double-add with co-Z formulae
Input: P E(Fg) and k= (kp_1,...,Ko)2 € N with kg =1
Output: Q = kP
: b+ ky; Rp < P; (Ry_p,Rp) + TPLU(Rp)
: fori=2ton—-1do
b+ k,'; (Rb7R1—b) — ZADDU(R1_b,Rb)
(R1—b7Rb) — ZADDC(Rb./R1_b)
end for
return Ry

o U1l AN W N =

(T,Ri_p) < ZADDU(Ry_p,Rp); (Ry—p,Rp) <— ZADDC(T,Ry_p)
since T—Ry_p =Rp
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Right-to-Left Binary Ladder With co-Z Trick

Algorithm 6 Joye’s double-add with co-Z formulae

Input: P E(Fg) and k= (kp_1,...,Ko)2 € N with kg =1
Output: Q = kP

1: b+ kq1; Rp < P; (R1_p,Rp) <+ TPLU(Rp)

2: fori=2ton—-1do

3: b < ki; (Rp,R1_p) < ZADDU(R1_p,Rp)

4: (R1_p,Rp) < ZADDC(Rp,R1_p)

5: end for

6: return Ry

m Cost per bit: (5M+2S) + (6M+3S) = 11M+5S
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Point Doubling-Addition

m Point doubling-addition evaluates: R+ 2P +Q
R+~T+P
Q«+~T-P
m (T,P) <~ ZADDU(P,Q); (R,Q) + ZADDC(T,P)
m cost: 11IM+5S
m Combined operation

m T+ P+Q followed by

Co-Z point doubling-addition with update

(R.Q) + ZDAU(P.Q)

m trades 2M against 2S
m cost: IM+7S

technicolor

15/22 "Q |




Application

Algorithm 7 Joye’s double-add with co-Z formulae
Input: P E(Fg) and k= (kp_1,...,Ko)2 € N with kg =1
Output: Q = kP
: b+ ky; Rp < P; (Ry_p,Rp) + TPLU(Rp)
: fori=2ton—-1do
b+ k,'
(R1—b,Rp) <~ ZDAU(R1_p,Rp)
end for
return Ry

o U1l AN W N =

m Cost per bit: 9M +7S

m (Similar saving applies to Montgomery ladder)
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Outline

Discussion
m Performance analysis
m Security analysis
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Performance: Addition Formulae

Operation Notation Cost
Point addition:
— general addition ADD 11M+5S
— co-Z addition ZADD 5M+2S
— €0-Z addition with update ZADDU 5M+2S
— general conjugate addition ADDC 12M +6S
— conjugate co-Z addition ZADDC 6M + 35
Point doubling-addition:
— general version DA 13M+8S
— mixed version mDA 1IM+7S
— co-Z version with update ZDAU IM+7S
m Comparison
m very efficient co-Z formulae
technicolor
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Performance: Scalar Multiplication

Algorithm Operations Cost per bit

Joye’s double-add:

— basic version DA 13M+8S

— co-Z version ZDAU IM+7S
Montgomery ladder:

— basic version DBL and ADD 14M + 105

— X-only version XDBL and XADD ~ 9M +7ST

— co-Z version ZDAU’ IM+7S

 assuming that multiplications by a have negligible cost

m Comparison

m co-Z versions are always faster
m cost is independent of the curve parameters

technicolor
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Performance: Scalar Multiplication

Algorithm Operations Cost per bit

Joye’s double-add:

— basic version DA 13M+8S

— co-Z version ZDAU IM+7S
Montgomery ladder:

— basic version DBL and ADD 14M + 105

— X-only version XDBL and XADD ~ 9M +7ST

— co-Z version ZACAU 8M+ 65

 assuming that multiplications by a have negligible cost

m Comparison

m co-Z versions are always faster
m cost is independent of the curve parameters

m Latest news: cost reduced to 8M + 6S with new ZACAU' op.
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Security Analysis

m Proposed co-Z implementations are built on highly regular
scalar multiplication algorithms

m inherit similar security features
m naturally resistant against
SPA-type attacks
safe-error attacks

m Can be combined with existing DPA-type countermeasures
m Output complete point representation
m possible to check redundant relations
e.g., output point belongs to the curve
m useful feature against (regular) fault attacks
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Outline

EH Conclusion .
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Summary

m New strategies for evaluating scalar multiplications on elliptic
curves using co-Z arithmetic

m nicely combine with certain binary ladders

m Efficient co-Z conjugate point addition formula (as well as
other companion co-Z formulae)

m require 7 or 8 registers

m suitable for memory constrained devices
)

o8

Full version available at http://eprint.iacr.org/2010/309
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Questions?
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