
Is Theoretical Cryptography
Any Good in Practice?

David Naccache
(invited talk to CRYPTO’10 and CHES’10)

Where can we go from here?

Export Undistinguishability?

Biometric practitioners currently test fingerprint
recognition algorithms using synthetic fingerprint
generators.

Joint unpublished work with Jean-Sébastien Coron

What is a synthetic generator?

An algorithm G with two push buttons.

What is a synthetic generator?

When the right button is pressed G creates a new
“virtual finger” model.

What is a synthetic generator?

The left button makes G output successive
“fingerprints” pi of the
current virtual finger.

= p1

What is a synthetic generator?

= p2

The left button makes G output successive
“fingerprints” pi of the
current virtual finger.

What is a synthetic generator?

= p3

The left button makes G output successive
“fingerprints” pi of the
current virtual finger.

How realistic are these generators?

Currently there is no theoretically sound approach
to fingerprint synthesis.

e.g. SFINGE uses Gabor-like space-variant filters,
enhanced with several hand-tuned transforms.

But after all, what sort of “sound theory” can one
expect to apply to human biology?

Can we export our methodologies?
Definition: A fingerprint database D is a family FID,i of

fingerprints (images) parameterized by an identity ID and
an acquisition number i.

FAR = Pr[1  R(FID,i,FID’,I’)| FID,I , FID’,I’ D, ID ID’]

FRR = Pr[0  R(FID,i,FID’,I’)| FID,I , FID’,I’ D, ID=ID’]

(Here R denotes a fingerprint recognition algorithm).

Definition: A synthetic generator G is {t,q,}-indistinguishable
from a database D if no algorithm A running in time t can
distinguish G from D with an advantage better than  in q
queries, when IDs in D are randomly permuted.

Can we export our methodologies?

We can now have:

1. “Biographers” who design generators.

2. “Bioanalysts” who try to break generators by
distinguishing them from human databases.

The game: design the mathematically simplest
possible undistinguishable G.

In other words

The biographer tries to bridge

and publishes his G

Proceedings
BioSim 2019

The bioanalyst tries to distinguish
model from reality (break the bridge)

If successful, he publishes as well

Proceedings
BioSim 2021

Note that so far we did not talk about
security or identification at all.

And when the model is stable

RG
p1,…,pk

Enrolment phase

Have biometricians do pure maths.

Given a synthetic generator G design a recognition
algorithm R and rigorously calculate its FAR and
FRR performances.

And when the model is stable

RG
pk+1

Challenge phase

Have biometricians do pure maths.

Given a synthetic generator G design a recognition
algorithm R and rigorously calculate its FAR and
FRR performances.

And when the model is stable

R

Decision phase

bit

Have biometricians do pure maths.

Given a synthetic generator G design a recognition
algorithm R and rigorously calculate its FAR and
FRR performances.

Biology was abstracted away

Decision bits follow a rigorously defined probability
distribution bG,R

We may then hope to compute rather than measure
crucial security parameters such as FAR or FRR.

RG

Two pure mathematical objects

Evidently

A biometrician proposing a new R should also
get a paper…

R

Proceedings
BioSec 2025

Export security reductions? (sort of)

Subleq is a Turing-complete machine having
only one instruction.

subleq a b c

 *(b)=*(b)-*(a)

 if the result is negative or zero, go to
c else execute the next instruction.

Joint unpublished work with Ch. Paar, F. Praden and G. Regazzoni

The Subleq Machine

Since subleq has only three arguments and
since there is no confusion of instructions
possible (there is only one!), a subleq code
can be regarded as a sequence of triples.

a1 b1 c1

a2 b2 c2

a3 b3 c3

:

…interleaved with data

Since data can be embedded in the code,
the sequence of triples can be interleaved
with data. For instance:

a1 b1 c1
data1 data2
a2 b2 c2
data3
a3 b3 c3

:

How does it work

*address_2 = *address_1 - *address_2;
if (*address_20)

{
program_counter = address_3;

}
else
{

program_counter = program_counter+3;
}

Allowing for comfort

Memory is loaded with instructions and data
altogether (no distinction).

Hence the code can potentially self-modify and
consider that any cell is a, b or c.

We can pre-store constants (like 0,1 etc)

e.g. we devote a cell called Z to contain zero, N to
contain -1

Finally, the shorthand notation $ will denote the
address where the $ symbol is.

What does this do?

subleq Z Z c

JMP c

subleq Z Z c

What does this do?

subleq a a $+1

CLR a

subleq a a $+1

What does this do?

CLR b

subleq a Z $+1

subleq Z b $+1

CLR Z

MOV b a

subleq b b $+1 *b=0

subleq a Z $+1 Z=-*a

subleq Z b $+1 *b=0-(-*a)=*a

subleq Z Z $+1 Z=0

What does this do?

subleq a Z $+1

subleq b Z $+1

CLR c

subleq Z c $+1

CLR Z

ADD a b c

subleq a Z $+1 Z=0-*a

subleq b Z $+1 Z=-*a-*b

subleq c c $+1 *c=*c-*c=0

subleq Z c $+1 *c=0+*a+*b

sublez Z Z $+1 Z=0

What does this do?

CLR t

subleq a t $+1

CLR s

subleq t s $+1

subleq b s c

BLE a b c

subleq t t $+1 t=0

subleq a t $+1 *t=-*a

subleq s s $+1 *s=0

subleq t s $+1 *s=*a

subleq b s c *s=*a-*b

if *a-*b0 goto c

What does this do?

CLR t

subleq a t $+1

CLR s

subleq b s $+1

subleq s t $+1

subleq N t c

BHI a b c

subleq t t $+1 *t=0

subleq a t $+1 *t=-*a

subleq s s $+1 *s=0

subleq b s $+1 *s=-*b

subleq s t $+1 *t=-*a+*b

subleq N t c *t=-*a+*b-(-1)

if *b-*a+10 goto c

What have we got so far?
JMP a goto a

MOV b a *b=*a

SUB a b c *c=*b-*a

ADD a b c *c=*b+*a

BHI a b c if *b-*a+10 goto c

if *b<*b+1*a goto c

if *b<*a goto c

if *a>*b goto c

BLE a b c if *a-*b0 goto c

if *a*b goto c

CLR a *a=0

Even more powerful

MOV L1 a

data Z

data Z

L1: data Z

BRX a

MOV L1 a *L1=*a

data Z

data Z

L1: data Z

What else do we need?

Boolean operations such as AND, XOR.

We only need one (e.g. using LUTs) because

)(22)(2)(2
7

0

1
7

0

7

0

BABAABABABBA i
i

i
i

i
i

i
i

i
i

i
i  







Hardware Architecture

RAM

We assume that we have a RAM initialized
with the code.

Read[i]

M[i]
subleq
core

Hardware Architecture

RAM

We assume that we have a RAM initialized
with the code.

Read[i+1]

M[i+1]
subleq
core

Hardware Architecture

RAM

We assume that we have a RAM initialized
with the code.

Read[i+2]

M[i+2]
subleq
core

Hardware Architecture

RAM

We assume that we have a RAM initialized
with the code.

Write[i+1]

M[i+1]-M[i]
subleq
core

Where is all this heading?
Chips suffer from side channel leakage.

Protecting against side channels has grown into a
science in itself (CHES).

Since a subleq machine can compute any algorithm
(e.g AES, RSA, SHA), a universal secure core will
reduce the problem of side channel resistance to
the problem of protecting this core.

This isn’t a new countermeasure but an attempt to
reduce the global side channel resistance issue to
the defending of a well defined hardware core.

The analogy
This isn’t a new countermeasure but an attempt to

reduce the global side channel resistance issue to
the defending of a well defined hardware core.

Just as in crypto we endeavor to find reductions of
resistance against various mathematical attacks
to the solving of well defined hard problems.

In practice

A one instruction set is an extreme.

Practical solutions could relax it a bit.

Given the device’s simplicity it is easy to model, understand
and protect.

The device’s regularity (always execute the same instruction)
is a security advantage: only data varies.

Simplicity fast clocking.

General Architecture

RAM
subleq
core

General Architecture

RAM
subleq
core

UNIVERSAL SECURE CORE

EXTERNALLY READABLE RAM

PROTECTED RAM

General Architecture

RAM
subleq
core

UNIVERSAL SECURE CORE

EXTERNALLY READABLE RAM

PROTECTED RAM

UNPROTECTED PROCESSOR

General Architecture

RAM
subleq
core

UNIVERSAL SECURE CORE

EXTERNALLY READABLE RAM

PROTECTED RAM

UNPROTECTED PROCESSOR

The machine was implemented

Prototype running on Virtex 5 FPGA

We coded a C to subleq compiler

Analyzed power leakage

For details: contact my Ph.D student

florian.praden@ens.fr

Homomorphism is on fashion…

Imagine a signature scheme K,S,V with the following
property: S does not sign strings but propositions.

The signature S(p) of a proposition p symbolizes the
statement that “p is true”.

In addition, we want an inference transform R.

R transforms two signatures into a new signature:

R(S(p), S(q))= S(r(p,q))

where r is an inference rule associated to R.

We call this propositional signatures

Example.

If R is the modus ponens inference transform then:

R(S(AB),S(A))=S(B)

Caveats:

We want R’s output to be indistinguishable from a directly

calculated (i.e. non inferred) signature of B.

We require soundness i.e. if proposition c cannot be inferred
from a and b then S(c) should not be inferable from S(a) and S(b)

More potent logical signatures?

First order logic signatures?

Lambda signatures?

Example:

R(S(x P(x)))=S(xP(x))

or

η(S(λx.(P x)))=S(P)

or

β(S(λn.n×2),S(7))=S(7×2)

Many practical applications

Such constructions will have many applications:

• Provide a user with a sequence of signed program
instructions allowing him to prove that a given
output was generated by the signed instructions
and/or from signed input.

Caution: this is not a proof that signed instructions were used
in the correct order! Proving ordered execution is an open
problem that can be tackled before propositional signatures
are exhibited.

• Boil down the signatures S(“paid $10”), S(“paid $40”)
and S(“paid $50DVD unlock”) into the signature
S(“DVD unlock”) giving access to contents.

If you are not convinced

To the geeks

• Prove that you know a proof of Fermat’s last theorem
without revealing the proof.

• Either you know the proof or you broke S.

To the perverts

• Break S

• Instead of submitting the result to Crypto exhibit the
signature S(“S is forgeable in polynomial time”).

• To drive the community crazy.

My current list of 10 theory questions
1. Construct a propositional signature scheme.

Conjecture: possible.

2. Can a one bit public-key black box encryption resist active attackers?

• Bob is given a black box that PK-encrypts a bit

• Bob cannot see the box’s random tape

• Bob sends a message m to Alice.

• Alice replies with h(m)

Can this be secured against active attackers?

Conjecture: no.

3. Construct a non-interactive authenticated PKE scheme:

• Alice encrypts a message for Bob and mixes with it a secret.

• Bob can ascertain that the message came from Alice.

• Bob cannot convey this conviction to anybody.

Conjecture: should be possible if not done yet. Maybe a candidate.

non fundamental

Refer to the end of this slideshow for more information on some of the problems

My current list of 10 theory questions

4. Construct a function f(x) whose computation using < g(x) space is provably
reducible to hard problem.

Variant: find such a function with a trapdoor (allowing the trapdoor’s
owner to compute f(x) in < g(x) space).

Conjecture: probably possible using AONTs?

5. Clarify RSA fixed-pattern-based-forgery limits.

Given an a-bit pattern L find an 3a-bit perfect cube having L as middle bits.

Trivial when L is LSB, trivial when L is MSB…

Application: jailbreak a very popular mobile phone.

How far can one push the pattern size in poly-time Affine RSA forgery.

¼ the size of n will be a stunning result. Current record: ⅓ (Crypto’01).

Cryptanalysis of PKCS#1 v.1.5 signatures.

Frustrating. No security proof. No known attack

non fundamental

Refer to the end of this slideshow for more information on some of the problems

My current list of 10 theory questions
6. Side channel can be used to attack a platform and to fingerprint (attest) it.

Challenge: link physical side channel to the logical responses.

Tune leakage to attest while not revealing keys.

Promising approach: tripartite Diffie Hellman

7. Construct a one way permutation which is not a trapdoor OWP whose key was
thrown away (nor a gm mod p).
Important practical applications in the design of hash functions.

Strictly no idea.

8. Devise an identity-based fully homomorphic encryption scheme.

A promising starting point: a variant of Smart-Vercauteren PKC’10 scheme.

We also attempt to backwards generate the PK of other FHE schemes.

9. Generic fault models.

See next slides.

10. Privacy refractory functions.

See next slides.

non fundamental

Refer to the end of this slideshow for more information on some of the problems

Disclaimer
I am David, not David Hilbert. I don’t read all LNCS proceedings.

It is possible that some of the listed questions already has solutions
or answers. Don’t execute me.

David, your
problem #5

was solved in
Eurocrypt 1911

Sorry I’ll remove
it from the list
and quote you

Cryptography in an ideal model

Paracryptography (fields bordering cryptography)
lack theoretical attention from the community.

Cryptography in reality

Paracryptography (fields bordering cryptography)
lack theoretical attention from the community.

Cryptography in reality

Paracryptography (fields bordering cryptography)
lack theoretical attention from the community.

Cryptography in reality

Imagine a subleq code P implementing CRT-RSA.

Allow the attacker to feed the device with input of
his choosing and to substitute n subleqs.

This is a “clean” model abstracting away physics.

Goal: Design code which is provably resilient against
the modification of at most n instructions.

Resilient: P either halts or outputs results that can’t
be used for conducting an RSA fault attack.

Fault attack theoretical models

Note that this is close to the Generic model where
we perform computations through pointers on
data rather than on data.

The three arguments of a subleq are pointers.

A subleq can never directly manipulate data.

In other words, we want a generic algorithm capable of
resisting a certain number of operation highjacks.

A new adversarial model.

Fault attack theoretical models

Can we plot n as a function of P’s code size?

Each dot is a code written and proved by someone.

proved resilience (n)

P’s code size

Fault attack theoretical models

Fault attack theoretical models

The need:

Analyze faults as effects on a mathematical virtual
machine implementing cryptography, not only as
faults in mathematical formulae.

Privacy refractory functions

Homomorphic encryption is great for privacy.

My banker can multiply my balance by 1.01 to credit
interests, subtract a $113 charge and add a $221
cash deposit without decrypting.

But the tool is not perfect.

Consider the following game

Alice gives to Bob two integers a and b.

Bob combines a and b using the operations +,-,× say
to a multiplication depth of 10.

He gives the result r to Alice.

Can Alice tell how Bob computed r?

Can Alice do so efficiently?

The tree grows quickly

step 0 {a,b}

The tree grows quickly

step 0 {a,b}

step 1 {a,b,a+b,ab,2a,2b,a2,b2}

The tree grows quickly

step 0 {a,b}

step 1 {a,b,a+b,ab,2a,2b,a2,b2}

step 2 68 terms

The tree grows quickly

step 0 {a,b}

step 1 {a,b,a+b,ab,2a,2b,a2,b2}

step 2 68 terms

step 3 2556 terms

The tree explodes quickly

step 0 {a,b}

step 1 {a,b,a+b,ab,2a,2b,a2,b2}

step 2 68 terms

step 3 2556 terms

step 4

If we forget commutativity and distributivity
growth is doubly exponential.

However…

r is a bivariate polynomial in a and b.

r‘=r mod a is a univariate polynomial mod a in b.

If the mult-depth is reasonable, we can bound the
coefficients of r. Assume that they are all < a.

We can attempt to solve a modular knapsack in the
powers of b. Let r’= ci b

i mod a

Subtract from r the ci b
i we found in , divide by a

and start over!

r may reveal what was the computed function.

Data vs. Operations

Cryptanalysis: extract data (k) from data (c,m).

Computational reversion: Extract the calculation
history from the data (k,c,m are all known, how
was c computed from k and m?).

Rarely possible but still sometimes possible.

What operations’ history is inferable from data?

A practical concern that got little attention so far.

In conclusion

Theoretical cryptographers dig deep and efficiently.

In conclusion

Theoretical cryptographers dig deep and efficiently.

Don’t forget to also dig sideways!

In conclusion

Theoretical cryptographers dig deep and efficiently.

Don’t forget to also dig sideways!

And even to dig up!

We can finally give a tentative answer

Where can we go from here?

Appendix
Additional information on some of the problems.

More on problem 2
Bob uses a PK black-box f(b) encrypting the bit b for Alice.

Alice uses a black-box f-1(f(b))=b to decrypt c=f(b).

Assume that Bob authenticates Alice by sending an encrypted
message f(m1),…, f(mk) to which Alice replies with h(m1,…,mk).

This is trivially attackable by an active adversary.

Charlie encrypts a zero bit using f, let c’ be this ciphertext.

Charlie feeds Alice with c,f(m2),…, f(mk). If Alice responds with the
same hash than Charlie infers that m1=0, else m1=1.

The process is repeated for each bit in turn.

More on problem 2
Assume now that Bob authenticates Alice by sending an

encrypted message f(m1),…, f(mk) to which Alice replies with r,
h(r,m1,…,mk) where r is a fresh random picked by Alice.

This time Charlie picks a message u1,…uk and challenges Alice with
f(m1),f(u2),…f(uk). This allows Charlie to infer m1.

The process is repeated for each bit in turn.

It seems impossible to protect the exchange against active
attackers if no access to f’s randomness is granted to Bob, but
this remains to prove.

Importance: what are the minimal secure operation conditions of
a low bandwidth PKE scheme?

More on problem 4
Alice buys a 10TB smart disk.

A smart disk is equipped with both 10TB and a processor Bob.

Alice wants to check the disks capacity.

Trivial solution: fill it with random data and read back.

Disadvantage: communication. Alice needs to send in 10TB.

Idea: have Alice send to the disk a small seed x, Bob expands x
into g(x) where g(x) is 10TB long. Bob responds to Alice with
h=SHA(g(x)).

Problem 1: find a g provably not allowing Bob to cheat i.e.
compute h in more time and less space.

Problem 2: find a g as in 1 that Alice can compute in less than
10TB while Bob cannot (Alice uses a trapdoor).

More on problem 5
Given the green chunk L, determine the red variables x,y,z so that

the equation holds over the integers:

Easier variant? :

x L y z=

2

x L y z=

3

More on problem 6
Platform physical attestation consists in having a terminal inject

into a target card T and a reference sample card R the same
code. Once the code is installed in the two cards, the cards are
fed with identical random input and run under identically
varying voltage and clock. The power consumption of the two
devices is correlated to ascertain that T is not a logical clone of
R (that is, that T and R belong to the same family of physical
devices).

While doing this, countermeasures and on-board RNGs must be
turned off (so as not to disturb the correlation process).

In addition T cannot access any of its non volatile secrets (as these
are unknown by R).

Note that T and R create a common secret (e.g. DH) unknown by
the terminal before starting the attestation process.

More on problem 6
As the attestation is complete, countermeasures and RNGs are

turned and the terminal executes a cryptographic protocol
with T (for instance T signs a challenge message).

This does not ascertain that T is not a logical clone.

The attacker can use a genuine T during the attestation and when
the attestation is over, switch to a logical clone.

The challenge consists in finding ways to “weld” the two phases.

For instance, have some data d that derives from the attestation
phase (and which is only known by T and R) injected into the
cryptographic protocol in a way that: d does not leak during
the attestation (dangerous game: countermeasures are off!)
and is still verifiable as correctly injected into the protocol by
the terminal.

More on problem 7
We are looking for a OW permutation transforming, say 100 bits

into 100 bits whose structure would not be based on “heavy”
NT machinery.

The object should be something looking like a keyless block cipher
whose operation is not reversible.

Passing message chunks through this OWP before hashing with a
function h is interesting: if an attacker finds a collision in h, he
still has to reverse the OWP to create a real message collision.

No candidate except “costly” public-key-like functions.

