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RSA with Chinese Remaindering (RSA-CRT)

Modulus N = pq, key pair (e, d), message m, padding function µ

Signing:

1 σp = µ(m)d mod p
2 σq = µ(m)d mod q
3 recombination: σ = CRT (σp, σq) = µ(m)d mod N

Verification: σe = µ(m) mod N

CRT gives up to 4x speedup compared to the straightforward RSA
implementation
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The Bellcore Attack on RSA-CRT [Boneh et al. ’96]
Signing

1 σp = µ(m)d mod p
2 σ′q 6= µ(m)d mod q ←− fault
3 σ′ = CRT (σp, σq) faulty signature

Verification: σ′e = µ(m) mod p, σ′e 6= µ(m) mod q

=⇒ gcd(σ′e − µ(m) mod N,N) = p
Applies to

any deterministic RSA padding
Example: FDH σ = H(m)d mod N, H : {0, 1}∗ 7→ ZN

probabilistic signature schemes where the randomizer r is sent
along with the signature
Example: PFDH σ = H(m ‖ r)d mod N
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The Fault Attacker’s Deadlock

Partially-Known Messages
Example: σ = (m‖r)d mod N
r is a random nonce not sent along with σ

Deadlock: given σ′, the attacker only gets the faulty padded
message σ′e and therefore can neither retrieve r nor infer (m‖r).
So he/she cannot compute

gcd(σ′e − (m‖r) mod N,N) = p

inducing faults in many signatures does not help since
different r values are used in successive signatures
short r can be guessed by exhaustive search
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The New Result

Extension of the Bellcore attack to a large class of partially known
message configurations, in particular to ISO/IEC 9796-2

Overcoming the deadlock

recovering the unknown message part (UMP) under certain
conditions on the size of the unknowns
extensions to multiple UMP’s and multiple faulty signatures
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The ISO/IEC 9796-2 Standard

ISO/IEC 9796-2 encoding of m = m[1] ‖m[2]

µ(m) = 6A16 ‖m[1] ‖H(m) ‖ BC16

Variant used in EMV

m[1] = α ‖ r ‖α′ , m[2] = data

r is unknown to the adversary. The encoded message is

µ(m) = 6A16 ‖α ‖ r ‖α′ ‖H(α ‖ r ‖α′ ‖data) ‖ BC16

The total number of unknown bits in µ(m) is kr + kh
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Fault Attack on Partially-Known Message ISO/IEC 9796-2

Let’s represent the message as

µ(m) = t + r · 2nr + H(m) · 28

where t is a known value, both r and H(m) are unknown.
After a fault, we have

σ′e = t + r · 2nr + H(m) · 28 mod p

Then (r , H(m)) must be a solution of the equation

a + b · x + c · y = 0 mod p

where a = t − σ′e mod N, b = 2nr and c = 28 are known.
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Fault Attack on Partially-Known Message ISO/IEC 9796-2

Now we are left with solving

a + b · x + c · y = 0 mod p

that admits a small root (x0, y0) = (r ,H(m)). However p is
unknown.

apply the method of [Herrmann and May ASIACRYPT’08]
(originally for factoring an RSA modulus N = pq when some
blocks of p are known)
the method is based on the Coppersmith’s technique for
finding small roots of polynomial equations
in turn, Coppersmith technique uses LLL to obtain (x0, y0)

finally, given (x0, y0), recover µ(m) and factor N by GCD
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Bounds on UMP size

For a balanced RSA modulus from [Herrmann and May
ASIACRYPT’08] we get

γ + δ ≤
√
2− 1
2

∼= 0.207

where γ = kr/k, δ = kh/k, k being the modulus size

Example: for 1024-bit RSA the total size of the unknowns x0 and
y0 can be at most 212 bits, so for ISO/IEC 9796-2 with kh = 160
the size of randomizer r can be as large as 52 bits
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Attack Extensions

several disjoint UMP blocks in the encoding function
two faults modulo different factors (one modulo p and one
modulo q)
two or more faults modulo the same prime factor
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Several Unknown Bits Blocks
Padding scheme

µ(m) = 6A16 ‖α1 ‖ r1 ‖α2 ‖ r2 ‖ · · · ‖αn ‖ rn ‖αn+1 ‖H(m) ‖ BC16

Bound
Using the extended result of [Herrmann and May ’08], we get

n∑
i=1

γi ≤
1− ln 2

2
∼= 0.153

for a balanced RSA modulus and a large number of blocks n

Limitation
Runtime increases exponentially with n
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Two Faults Modulo Different Factors
Having one signature incorrect mod p and the other incorrect mod
q, we get

× a0 + b0 · x0 + c0 · y0 = 0 mod p
a1 + b1 · x1 + c1 · y1 = 0 mod q

a0a1 + . . .+ c0c1 · y0y1 = 0 mod N

Can be solved by linearization under the bound

γ + δ ≤ 1
6
∼= 0.167

this attack is significantly faster than the basic one
the 16.7% bound is likely to lend itself to further
improvements using Coppersmith’s technique
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Several Faults Modulo the Same Factor
Extension of Coppersmith’s technique to multiple equations

fu(xu, yu) = au + xu + cuyu, 1 ≤ u ≤ `

coming from ` successive faults
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Bound on the size of the unknowns is asymptotically 0.5
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Simulation

Simulation parameters

H = SHA-1, i.e. kh = 160
1024-, 1536- and 2048-bit RSA
LLL implementation: SAGE
standard 2 GHz Intel laptop
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Single-Fault Attack Simulations

modulus size k UMP size kr runtime
1024 6 4 minutes
1024 13 51 minutes
1536 70 39 seconds
1536 90 9 minutes
2048 158 55 seconds

exhausting a 13-bit randomizer took 0.13 seconds
the attack becomes more efficient for larger moduli
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Multiple-Fault Simulations

three faulty signatures
γ + δ ≤ 0.204

modulus size k UMP size kr runtime
1024 40 49 seconds
1536 150 74 seconds
2048 250 111 seconds

multiple-fault attacks with three faults are more efficient than
single-fault attacks
exhausting a 40-bit randomizer would take about a year on
the same PC
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Physical Fault Injection

unprotected 1536-bit RSA-CRT on ATmega128 (running time
several minutes at 7.68 MHz)
spike (sag) attack [Schmidt FDTC’08]
40 ns cut-off in power supply using FPGA
recovering factorization of N from the faulty signature with
our basic attack
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Before Concluding: Another Practical Application

PKCS#1 v1.5

µ(m) = 000116 ‖ FF16 . . . FF16︸ ︷︷ ︸
k1 bytes

‖ 0016 ‖T ‖H(m)

T is a known sequence of bytes
k1 adjusted to make µ(m) have the same size as the modulus

With the single unknown the bound is δ < 0.25, therefore for the
2048-bit modulus and H =SHA-512 the modulus can be factored
with a single faulty signature even when the signed message is
totally unknown
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Conclusion

a novel practical attack on RSA-CRT with partially unknown
messages
particularly applicable to EMV and PKCS#1 v1.5 padding
schemes
not applicable to PSS [Coron and Mandal, ASIACRYPT’09]

Extended version of the paper: ePrint 2009/309
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