Elliptic Curve Point Multiplication Combining Yao’s Algorithm and Double Bases

Nicolas Méloni and M. Anwar Hasan

Department of Electrical and Computer Engineering
University of Waterloo

September 8th, 2009
Outline

1. Fast point scalar multiplication
2. Yao’s exponentiation algorithm
3. The double-base number system
4. A Yao-DBNS algorithm (slow + slow = fast)
5. Comparisons
6. Conclusions
How to perform \([k]P = P + P + \cdots + P\)?

Double-and-add
- \(k = \sum_{i=0}^{n-1} k_i 2^i\)
- \(k = 267 = 100001011 \rightarrow 267P = 2(2(2^2(2^5P + P) + P) + P) + P\)
- 1 doubling per bit + 1 addition per non-zero bit

Non Adjacent Form (NAF)
- \(k_i \in \{-1, 0, 1\}\)
- \(k = 31 = 11111_2 = 10000\overline{1}_{NAF}\)
- at most \(n\) doublings and \(\frac{n}{3}\) additions (on average)
How to perform \([k]P = P + P + \cdots + P\)?

Brauer’s Algorithm (\(w\)NAF)

- \(|k_i| < 2^{w-1}\)
- \(k = 267 = 100001011\)
- 2-NAF: \(100010\bar{1}0\bar{1}\)
- 3-NAF: \(100001003\)
- 4-NAF: \(100010005\)
- 5-NAF: \(1000000011\)

Two steps

- precompute \(3P, \ldots, (2^w - 1)P\)
- perform the horner scheme
Yao’s exponentiation algorithm

Yao’s algorithm

Let $k = k_{n-1}2^{n-1} + \cdots + k_12 + k_0$ with $k_i \in \{0, 1, 3, \ldots, 2^w - 1\}$
Yao’s algorithm

Let $k = k_{n-1}2^{n-1} + \cdots + k_1 2 + k_0$ with $k_i \in \{0, 1, 3, \ldots, 2^w - 1\}$

- Compute $2^i P \ \forall \ i \leq n - 1$
Yao’s algorithm

Let \(k = k_{n-1}2^{n-1} + \cdots + k_12 + k_0 \) with \(k_i \in \{0, 1, 3, \ldots, 2^w - 1\} \)

- Compute \(2^iP \ \forall i \leq n - 1 \)
- \(d(1)P, \ldots, d(2^w - 1)P \), where \(d(j) \) is the sum of the \(2^i \) such that \(k_i = j \)
Yao’s exponentiation algorithm

Yao’s algorithm

Let $k = k_{n-1}2^{n-1} + \cdots + k_12 + k_0$ with $k_i \in \{0, 1, 3, \ldots, 2^w - 1\}$

- Compute $2^iP \forall i \leq n - 1$
- $d(1)P, \ldots, d(2^w - 1)P$, where $d(j)$ is the sum of the 2^i such that $k_i = j$
- kP is obtained as $d(1)P + 3d(3)P + \cdots + (2^w - 1)d(2^w - 1)P$
Yao’s exponentiation algorithm

Let \(k = k_{n-1}2^{n-1} + \cdots + k_12 + k_0 \) with \(k_i \in \{0, 1, 3, \ldots, 2^w - 1\} \)

- Compute \(2^i P \) \(\forall i \leq n - 1 \)
- \(d(1) P, \ldots, d(2^w - 1) P \), where \(d(j) \) is the sum of the \(2^i \) such that \(k_i = j \)
- \(kP \) is obtained as \(d(1) P + 3d(3) P + \cdots + (2^w - 1)d(2^w - 1) P \)

It is equivalent to rewrite \(k \) as:
\[
k = 1 \times \sum_{k_i=1}^{d(1)} 2^i + 3 \times \sum_{k_i=3}^{d(3)} 2^i + \cdots + (2^w - 1) \times \sum_{k_i=2^w-1}^{d(2^w-1)} 2^i
\]
Yao’s exponentiation algorithm

Yao’s algorithm

Example

Let \(k = 314159 = 100\,0300\,1003\,0000\,5007 \), \(n = 19 \) and \(2^w - 1 = 7 \).

\[
k = 1 \times (2^{18} + 2^{11}) + 3 \times (2^{14} + 2^8) + 5 \times 2^3 + 7 \times 2^0
\]

- Compute
- \(d(1)P = 000\,0000\,0000\,0000\,0000 \)
- \(d(3)P = 000\,0000\,0000\,0000\,0000 \)
- \(d(5)P = 000\,0000\,0000\,0000\,0000 \)
- \(d(7)P = 000\,0000\,0000\,0000\,0000 \)

Same number of operations as the previous methods but slower in practice.
Yao’s algorithm

Example

Let $k = 314159 = 100\ 0300\ 1003\ 0000\ 5007$, $n = 19$ and $2^w - 1 = 7$. $k = 1 \times (2^{18} + 2^{11}) + 3 \times (2^{14} + 2^8) + 5 \times 2^3 + 7 \times 2^0$

- Compute P
- $d(1)P = 000\ 0000\ 0000\ 0000\ 0000$
- $d(3)P = 000\ 0000\ 0000\ 0000\ 0000$
- $d(5)P = 000\ 0000\ 0000\ 0000\ 0000$
- $d(7)P = 000\ 0000\ 0000\ 0000\ 0001$
Yao’s exponentiation algorithm

Yao’s algorithm

Example

Let \(k = 314159 = 100\ 0300\ 1003\ 0000\ 5007 \), \(n = 19 \) and \(2^w - 1 = 7 \).

\(k = 1 \times (2^{18} + 2^{11}) + 3 \times (2^{14} + 2^8) + 5 \times 2^3 + 7 \times 2^0 \)

- Compute \(P \ldots 2^3 P \)
- \(d(1)P = 000\ 0000\ 0000\ 0000\ 0000 \)
- \(d(3)P = 000\ 0000\ 0000\ 0000\ 0000 \)
- \(d(5)P = 000\ 0000\ 0000\ 0000\ 1000 \)
- \(d(7)P = 000\ 0000\ 0000\ 0000\ 0001 \)

Same number of operations as the previous methods but slower in practice.
Yao’s exponentiation algorithm

Yao’s algorithm

Example

Let $k = 314159 = 100\,0300\,1003\,0000\,5007$, $n = 19$ and $2^w - 1 = 7$.

$k = 1 \times (2^{18} + 2^{11}) + 3 \times (2^{14} + 2^8) + 5 \times 2^3 + 7 \times 2^0$

- Compute $P \ldots 2^3 P \ldots 2^8 P$
- $d(1)P = 000\,0000\,0000\,0000\,0000$
- $d(3)P = 000\,0000\,0001\,0000\,0000$
- $d(5)P = 000\,0000\,0000\,0000\,1000$
- $d(7)P = 000\,0000\,0000\,0000\,0001$

Same number of operations as the previous methods but slower in practice.
Yao’s exponentiation algorithm

Yao’s algorithm

Example

Let $k = 314159 = 100 0300 1003 0000 5007$, $n = 19$ and $2^w - 1 = 7$. $k = 1 \times (2^{18} + 2^{11}) + 3 \times (2^{14} + 2^8) + 5 \times 2^3 + 7 \times 2^0$

- Compute $P \ldots 2^3 P \ldots 2^8 P \ldots 2^{11} P$
- $d(1)P = 000 0000 1000 0000 0000$
- $d(3)P = 000 0000 0001 0000 0000$
- $d(5)P = 000 0000 0000 0000 1000$
- $d(7)P = 000 0000 0000 0000 0001$

Same number of operations as the previous methods but slower in practice.
Yao’s algorithm

Example

Let \(k = 314159 = 100 0300 1003 0000 5007 \), \(n = 19 \) and \(2^w - 1 = 7 \).

\[
k = 1 \times (2^{18} + 2^{11}) + 3 \times (2^{14} + 2^8) + 5 \times 2^3 + 7 \times 2^0
\]

- Compute \(P \cdots 2^3 P \cdots 2^8 P \cdots 2^{11} P \cdots 2^{14} P \)
- \(d(1)P = 000 0000 1000 0000 0000 \)
- \(d(3)P = 000 0100 0001 0000 0000 \)
- \(d(5)P = 000 0000 0000 0000 1000 \)
- \(d(7)P = 000 0000 0000 0000 0001 \)

Same number of operations as the previous methods but slower in practice.
Yao’s algorithm

Example

Let \(k = 314159 = 100 0300 1003 0000 5007 \), \(n = 19 \) and \(2^w - 1 = 7 \).

\[k = 1 \times (2^{18} + 2^{11}) + 3 \times (2^{14} + 2^8) + 5 \times 2^3 + 7 \times 2^0 \]

- Compute \(P \ldots 2^3 P \ldots 2^8 P \ldots 2^{11} P \ldots 2^{14} P \ldots 2^{18} P \)
 - \(d(1)P = 100 0000 1000 0000 0000 \)
 - \(d(3)P = 000 0100 0001 0000 0000 \)
 - \(d(5)P = 000 0000 0000 0000 1000 \)
 - \(d(7)P = 000 0000 0000 0000 0001 \)
Yao’s exponentiation algorithm

Yao’s algorithm

Example

Let $k = 314159 = 100 0300 1003 0000 5007$, $n = 19$ and $2^w - 1 = 7$.

$k = 1 \times (2^{18} + 2^{11}) + 3 \times (2^{14} + 2^8) + 5 \times 2^3 + 7 \times 2^0$

- Compute $P \ldots 2^3 P \ldots 2^8 P \ldots 2^{11} P \ldots 2^{14} P \ldots 2^{18} P$
- $d(1)P = 100 0000 1000 0000 0000$
- $3 \times d(3)P = 000 0100 0001 0000 0000$
- $5 \times d(5)P = 000 0000 0000 0000 1000$
- $7 \times d(7)P = 000 0000 0000 0000 0001$

Same number of operations as the previous methods but slower in practice.
Yao’s exponentiation algorithm

Yao’s algorithm

Example
Let \(k = 314159 = 100\ 0300\ 1003\ 0000\ 5007 \), \(n = 19 \) and \(2^w - 1 = 7 \).

\[
k = 1 \times (2^{18} + 2^{11}) + 3 \times (2^{14} + 2^8) + 5 \times 2^3 + 7 \times 2^0
\]

- Compute \(P \ldots 2^3 P \ldots 2^8 P \ldots 2^{11} P \ldots 2^{14} P \ldots 2^{18} P \)
- \(d(1)P = 100\ 0000\ 1000\ 0000\ 0000 \)
- \(3 \times d(3)P = 000\ 0300\ 0003\ 0000\ 0000 \)
- \(5 \times d(5)P = 000\ 0000\ 0000\ 0000\ 5000 \)
- \(7 \times d(7)P = 000\ 0000\ 0000\ 0000\ 0007 \)

Same number of operations as the previous methods but slower in practice.
Yao's exponentiation algorithm

Yao's algorithm

Example
Let \(k = 314159 = 100\ 0300\ 1003\ 0000\ 5007 \), \(n = 19 \) and \(2^w - 1 = 7 \). \(k = 1 \times (2^{18} + 2^{11}) + 3 \times (2^{14} + 2^8) + 5 \times 2^3 + 7 \times 2^0 \)

- Compute \(P \ldots 2^3 P \ldots 2^8 P \ldots 2^{11} P \ldots 2^{14} P \ldots 2^{18} P \)
- \(d(1)P = 100\ 0000\ 1000\ 0000\ 0000 \)
- \(3 \times d(3)P = 000\ 0300\ 0003\ 0000\ 0000 \)
- \(5 \times d(5)P = 000\ 0000\ 0000\ 0000\ 5000 \)
- \(7 \times d(7)P = 000\ 0000\ 0000\ 0000\ 0007 \)
- \(\sum i \times d(i)P = 100\ 0300\ 1003\ 0000\ 5007 \)

\(kP = 7d(7)P + 5d(5)P + 3d(3)P + d(1)P \)
Same number of operations as the previous methods but slower in practice.
Double-base number system

Definition

\[k \geq 0, \ k = \sum_{i=1}^{n} 2^{b_i} 3^{t_i} \]

Properties

- Such a representation always exists
- It is highly redundant: 127 has 783 representations!
- Some of them are very sparse (canonical representation): sublinear number of non-zero digits

Considered as not suitable for scalar multiplication.
Double-base chains

Definition

Given $k > 0$, a sequence $(C_i)_i > 0$ of positive integers satisfying: $C_1 = 1$, $C_{i+1} = 2^{b_i} 3^{t_i} C_i + d_i$, with $d_i \in \{-1, 1\}$ for some $b_i, t_i \geq 0$ and such that $C_n = k$ for some n is called a double-base chain computing k.

Example

- $k = 1717 = 2^6 3^3 + 2^2 3 + 1$
- $kP = 2^2 3 (2^4 3^2 P + P) + P$
- $2^4 3^2 P \rightarrow 2^4 3^2 P + P \rightarrow 2^6 3^3 P + 2^2 3P \rightarrow 2^6 3^3 P + 2^2 3P + P$

- More restrictive
- No longer sublinear
A Yao-DBNS algorithm (slow+slow = fast)

Yao’s algorithm adapted to double-base number system

\[k = 2^{b_n} 3^{t_n} + \ldots + 2^{b_1} 3^{t_1} \]

- Compute \(2^i P \ \forall \ i \leq b_{\text{max}} = \max_i(b_i) \)
- For all \(j \leq t_{\text{max}} \), compute \(d(0)P, d(1)P, \ldots, d(t_{\text{max}})P \), where \(d(j) \) is the sum of the \(2^i \) such that \(t_i = j \)
- \(kP \) is obtained as: \(d(0)P + 3d(1)P + 3^2 d(2)P + \ldots + 3^{t_{\text{max}}} d(t_{\text{max}})P \)

It is equivalent to rewrite \(k \) as:

\[k = \sum_{t_i=0} d(0) + 3 \times \sum_{t_i=1} 2^i + 3^2 \times \sum_{t_i=2} 2^i + \ldots + 3^{t_{\text{max}}} \times \sum_{t_i=t_{\text{max}}} 2^i \]
A Yao-DBNS algorithm (slow+slow = fast)

Yao’s algorithm adapted to double-base number system

Let $k = 314159 = 2^{10}3^5 + 2^83^5 + 2^{10}3^1 + 2^23^2 + 3^2 + 2^13^0$
$max(a_i) = 10$ and $max(b_i) = 5$:

- Compute
- $d(0)P = $
- $d(1)P = $
- $d(2)P = $
- $d(5) = $
A Yao-DBNS algorithm (slow+slow = fast)

Yao’s algorithm adapted to double-base number system

Let $k = 314159 = 2^{10}3^5 + 2^83^5 + 2^{10}3^1 + 2^23^2 + 3^2 + 2^13^0$

$max(a_i) = 10$ and $max(b_i) = 5$:

- Compute P
- $d(0)P =$
- $d(1)P =$
- $d(2)P = P$
- $d(5) =$
A Yao-DBNS algorithm (slow+slow = fast)

Yao’s algorithm adapted to double-base number system

Let \(k = 314159 = 2^{10}3^5 + 2^83^5 + 2^{10}3^1 + 2^23^2 + 3^2 + 2^13^0 \)

\(\max(a_i) = 10 \) and \(\max(b_i) = 5 \):

- Compute \(P \ldots 2P \)
- \(d(0)P = 2P \)
- \(d(1)P = \)
- \(d(2)P = P \)
- \(d(5) = \)
A Yao-DBNS algorithm (slow+slow = fast)

Yao’s algorithm adapted to double-base number system

Let \(k = 314159 = 2^{10}3^5 + 2^83^5 + 2^{10}3^1 + 2^23^2 + 3^2 + 2^13^0 \)

\(\max(a_i) = 10 \) and \(\max(b_i) = 5 \):
- Compute \(P \ldots 2P \ldots 2^2P \)
- \(d(0)P = 2P \)
- \(d(1)P = \)
- \(d(2)P = P + 2^2P \)
- \(d(5) = \)
A Yao-DBNS algorithm (slow+slow = fast)

Yao’s algorithm adapted to double-base number system

Let $k = 314159 = 2^{10}3^5 + 2^83^5 + 2^{10}3^1 + 2^23^2 + 3^2 + 2^13^0$

$max(a_i) = 10$ and $max(b_i) = 5$:

- Compute $P \ldots 2P \ldots 2^2P \ldots 2^8P$
- $d(0)P = 2P$
- $d(1)P =$
- $d(2)P = P + 2^2P$
- $d(5) = 2^8P$
A Yao-DBNS algorithm (slow+slow = fast)

Yao’s algorithm adapted to double-base number system

Let \(k = 314159 = 2^{10}3^5 + 2^83^5 + 2^{10}3^1 + 2^23^2 + 3^2 + 2^13^0 \)

\[\max(a_i) = 10 \text{ and } \max(b_i) = 5: \]

- Compute \(P \ldots 2P \ldots 2^2P \ldots 2^8P \ldots 2^{10}P \)
- \(d(0)P = 2P \)
- \(d(1)P = 2^{10}P \)
- \(d(2)P = P + 2^2P \)
- \(d(5) = 2^8P + 2^{10}P \)
Yao’s algorithm adapted to double-base number system

Let $k = 314159 = 2^{10}3^5 + 2^83^5 + 2^{10}3^1 + 2^23^2 + 3^2 + 2^13^0$

$\max(a_i) = 10$ and $\max(b_i) = 5$:

- Compute $P \ldots 2P \ldots 2^2P \ldots 2^8P \ldots 2^{10}P$
- $d(0)P = 2P$
- $d(1)P = 2^{10}P$
- $d(2)P = P + 2^2P$
- $d(5) = 2^8P + 2^{10}P$
- $kP = 3^5d(5)P + 3^2d(2)P + 3d(1)P + d(0)P$
- $= 3(3(3^3d(5)P + d(2)P) + d(1)P) + d(0)P$
- Same number of doublings/triplings
- Lower number of additions
Generalization

Yao’s algorithm can be applied to any number system using two sets of integers.

Generalized double-base number system

- \(A = \{a_1, \ldots, a_r\} \) and \(B = \{b_1, \ldots, b_t\} \) two sets of integers
- \(k = \sum_{i=1}^{n} a_f(i) b_g(i) \) with
 - \(f : \{1, \ldots, n\} \to \{1, \ldots, r\} \) and
 - \(g : \{1, \ldots, n\} \to \{1, \ldots, t\} \)

Scalar multiplication

- \(k = a_1 \sum_{f(i)=1} b_g(i) + \cdots + a_n \sum_{f(i)=n} b_g(i) \)
- Compute the \(b_i P \)'s for \(i = 1 \ldots t \)
- \(d(j)P \) is the sum of all \(b_g(i)P \)'s such that \(f(i) = j \)
- \(kP = a_1 d(1)P + a_2 d(2)P + \cdots + a_n d(n)P \)
Examples

Double-base number system

- $A = \{1, 2, \ldots, 2^{b_{\text{max}}} \}$
- $B = \{1, 3, \ldots, 3^{t_{\text{max}}} \}$

Yao’s Algorithm

- $A = \{1, 3, 5, \ldots, 2^w - 1\}$
- $B = \{1, 2, \ldots, 2^n \}$

Brauer’s Algorithm

- $A = \{1, 2, \ldots, 2^n \}$
- $B = \{1, 3, 5, \ldots, 2^w - 1\}$

Question

- Can we find better sets?
A Yao-DBNS algorithm (slow+slow = fast)

Binary/Zeckendorf number system

The Fibonacci sequence

- $F_0 = 0$, $F_1 = 1$, $\forall n \geq 0$, $F_{n+2} = F_{n+1} + F_n$
- $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots$

BZNS

- $A = \{1, 2, \ldots, 2^{b_{\text{max}}}\}$
- $B = \{F_2, F_3, \ldots, F_{Z_{\text{max}}}\}$
- $k = \sum_{i=1}^{n} 2^{b_i} F_{Z_i}$

Computation

Using a greedy approach, just like with the DBNS
Example

\[k = 314159 = 2^8 F_{16} + 2^8 F_{13} + 2^5 F_{10} + 2 F_9 + 2 F_5 + F_2. \]

We have \(\max(b_i) = 8 \) and \(\max(Z_i) = 16 \):

- Compute \(P, 2P, 3P, \ldots, F_{16}P \)
- \(d(0)P = F_2P \)
- \(d(1)P = F_9P + F_5P \)
- \(d(5)P = F_{10}P \)
- \(d(8)P = F_{16}P + F_{13}P \)
- \([k]P = 2^8 d(8)P + 2^5 d(5)P + 2d(1)P + d(0)P = 2(2^4(2^3 d(8)P + d(5)P) + d(1)P) + d(0)P \)

Interesting when the \(F_iP \)'s can be efficiently computed (like with ECC).
Performing tests

Methodology

For 160-bit scalars and all values of b_{max}, t_{max} and Z_{max} such that $2^{b_{\text{max}}} 3^{t_{\text{max}}}$ and $2^{b_{\text{max}}} F_{Z_{\text{max}}}$ are 160-bits integers. For each curve and each set of parameters, we have:

- generated 1000 pseudo random integers in $\{0, \ldots, 2^{160} - 1\}$,
- converted each integer into the DBNS/BZNS systems using the corresponding parameters,
- counted all the operations involved in the point scalar multiplication process.
Table: Optimal parameters and operation count for 160-bit scalars

<table>
<thead>
<tr>
<th>Curve shape</th>
<th>Method</th>
<th>b_{max}</th>
<th>t_{max} / Z_{max}</th>
<th># group operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DIK</td>
<td>DB chain1</td>
<td>80</td>
<td>51</td>
<td>1502.4</td>
</tr>
<tr>
<td></td>
<td>Yao-DBNS</td>
<td>44</td>
<td>74</td>
<td>1477.3</td>
</tr>
<tr>
<td>Edwards</td>
<td>DB chain</td>
<td>156</td>
<td>3</td>
<td>1322.9</td>
</tr>
<tr>
<td></td>
<td>Yao-DBNS</td>
<td>140</td>
<td>13</td>
<td>1283.3</td>
</tr>
<tr>
<td>ExtJQuartic</td>
<td>DB chain</td>
<td>156</td>
<td>3</td>
<td>1260.0</td>
</tr>
<tr>
<td></td>
<td>(2,3,5)NAF2</td>
<td>131</td>
<td>12</td>
<td>1226.0</td>
</tr>
<tr>
<td></td>
<td>Yao-DBNS</td>
<td>140</td>
<td>13</td>
<td>1210.9</td>
</tr>
<tr>
<td>InvEdwards</td>
<td>DB chain</td>
<td>156</td>
<td>3</td>
<td>1290.3</td>
</tr>
<tr>
<td></td>
<td>(2,3,5)NAF</td>
<td>142</td>
<td>9</td>
<td>1273.8</td>
</tr>
<tr>
<td></td>
<td>Yao-DBNS</td>
<td>140</td>
<td>13</td>
<td>1258.6</td>
</tr>
<tr>
<td>Jacobian-3</td>
<td>DB chain</td>
<td>100</td>
<td>38</td>
<td>1504.3</td>
</tr>
<tr>
<td></td>
<td>(2,3,5)NAF</td>
<td>131</td>
<td>12</td>
<td>1426.8</td>
</tr>
<tr>
<td></td>
<td>Yao-DBNS</td>
<td>131</td>
<td>19</td>
<td>1475.3</td>
</tr>
<tr>
<td></td>
<td>Yao-BZNS</td>
<td>142</td>
<td>28</td>
<td>1476.9</td>
</tr>
</tbody>
</table>

2P. Longa and C. Gebotys, *Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method for Efficient Elliptic Curve Scalar Multiplication*, 2009
Conclusions

Remarks

- Yao-DBNS algorithm is less restrictive than double-base chains and faster
- Works with any other double base system
- Gives hope to slow algorithm designers

Future works

- What about multi-base number systems ...
- ... and multi-scalar multiplication?
Conclusions

Remarks

- Yao-DBNS algorithm is less restrictive than double-base chains and faster
- Works with any other double base system
- Gives hope to slow algorithm designers

Future works

- What about multi-base number systems ...
- ... and multi-scalar multiplication?

Any questions?

nmeloni@vlsi.uwaterloo.ca
http://www.vlsi.uwaterloo.ca/~nmeloni/