MicroEliece: McEliece for Embedded Devices

MicroEliece

[1/32]

T.Eisenbarth, T. Giineysu, S. Heyse, C. Paar

Horst Gortz Institute for IT-Security
Ruhr-University Bochum

CHES2009 Lausanne Switzerland

MicroEliece Chair for Embedded Security

HGI

© Intro

© McEliece
© Adaptions

@ 'mplementation

© Results

© Conclusion

[2/32] MicroEliece Chair for Embedded Security HGI

O Intro
@ History

@ Motivation
© McEliece
© Adaptions
O Implementation
© Results
© Conclusion

40> «4F>r «=»r <«

= =

DA

History
@ Proposed 1978 by Robert McEliece

[3/32] MicroEliece Chair for Embedded Security HGI

History
@ Proposed 1978 by Robert McEliece

@ Makes use of linear error correcting code (originally Goppa Codes)

[3/32] MicroEliece Chair for Embedded Security HGI

History
@ Proposed 1978 by Robert McEliece
@ Makes use of linear error correcting code (originally Goppa Codes)

@ Underlying problem (decoding of generic linear codes) is NP-hard [1]

[3/32] MicroEliece Chair for Embedded Security HGI

History
@ Proposed 1978 by Robert McEliece
@ Makes use of linear error correcting code (originally Goppa Codes)
@ Underlying problem (decoding of generic linear codes) is NP-hard [1]
@ Up to now unbroken, but not well studied like RSA, ECC

[3/32] MicroEliece Chair for Embedded Security HGI

Why not earlier?

@ Memory requirements prevent implementation on uCs and FPGAs
(450 KB for 80 bit security)

[4/32] MicroEliece Chair for Embedded Security HGI

Why not earlier?

@ Memory requirements prevent implementation on uCs and FPGAs
(450 KB for 80 bit security)

@ But today off-the-shelf hardware contains sufficient memory

[4/32] MicroEliece Chair for Embedded Security HGI

Why not earlier?

@ Memory requirements prevent implementation on uCs and FPGAs
(450 KB for 80 bit security)

@ But today off-the-shelf hardware contains sufficient memory

Why now?

[4/32] MicroEliece Chair for Embedded Security HGI

Why not earlier?

@ Memory requirements prevent implementation on uCs and FPGAs
(450 KB for 80 bit security)

@ But today off-the-shelf hardware contains sufficient memory

Why now?

@ Except large keys, McEliece is very efficient

[4/32] MicroEliece Chair for Embedded Security HGI

Why not earlier?

@ Memory requirements prevent implementation on uCs and FPGAs
(450 KB for 80 bit security)

@ But today off-the-shelf hardware contains sufficient memory

Why now?
@ Except large keys, McEliece is very efficient

@ Existence of quantum computers are a threat to systems based on the
discrete log (DLP) and factorization (FP) problem

[4/32] MicroEliece Chair for Embedded Security HGI

Why not earlier?

@ Memory requirements prevent implementation on uCs and FPGAs
(450 KB for 80 bit security)

@ But today off-the-shelf hardware contains sufficient memory

Why now?
@ Except large keys, McEliece is very efficient

@ Existence of quantum computers are a threat to systems based on the
discrete log (DLP) and factorization (FP) problem

@ Generally larger diversification for future public key systems is desirable

[4/32] MicroEliece Chair for Embedded Security HGI

McEliece
° @ Key Generation

@ Encryption
@ Decryption

[5/32] MicroEliece Chair for Embedded Security HGI

Do

Key Generation

@ Randomly select a binary (n x k) generator matrix G of a code C
capable of correcting t errors

[5/32] MicroEliece Chair for Embedded Security HGI

Key Generation

@ Randomly select a binary (n x k) generator matrix G of a code C
capable of correcting t errors

@ Select a random (k x k) binary non-singular scrambler matrix S

[5/32] MicroEliece Chair for Embedded Security HGI

Key Generation

@ Randomly select a binary (n x k) generator matrix G of a code C
capable of correcting t errors

@ Select a random (k x k) binary non-singular scrambler matrix S

@ Select a random (n x n) permutation matrix P

[5/32] MicroEliece Chair for Embedded Security

HGI

Key Generation

@ Randomly select a binary (n x k) generator matrix G of a code C
capable of correcting t errors

@ Select a random (k x k) binary non-singular scrambler matrix S
@ Select a random (n x n) permutation matrix P
o Compute the (k x n) matrix Gpyp =S x G x P

[5/32] MicroEliece Chair for Embedded Security HGI

Key Generation

[5/32]

@ Randomly select a binary (n x k) generator matrix G of a code C
capable of correcting t errors

@ Select a random (k x k) binary non-singular scrambler matrix S
@ Select a random (n x n) permutation matrix P

o Compute the (k x n) matrix Gpyp =S x G x P

@ Public key is (Gpyp, t); Private key is (S, C, P).

MicroEliece Chair for Embedded Security

HGI

Key Generation

@ Randomly select a binary (n x k) generator matrix G of a code C
capable of correcting t errors

@ Select a random (k x k) binary non-singular scrambler matrix S
@ Select a random (n x n) permutation matrix P

o Compute the (k x n) matrix Gpyp =S x G x P

@ Public key is (Gpyp, t); Private key is (S, C, P).

In practice n determines the ciphertext size, k the plaintext size and t
corresponds to the number of errors added.

[5/32] MicroEliece Chair for Embedded Security HGI

Toy Example 1
For simplification (and size), a single error correcting (7,4) Hamming code
H is used.
01 00 00 O
00 01 00O
1 000 1 1 0 11 0 1 00 0 0 0 0 1
c_Jor o010 1{s Jr oo 1l, J1 00000 o0
=90 0 1 0 0 0 1(>~ Yo 1 1 1("TY0o 0 1 0 0 0 O
00 01 1 1 0 1 1 0 0 0000 01 0
01 00 00 O
0000 1 00
11110 0 0
110010 0
Cpup =S+GxP =47 4 ¢ 1 1 ¢ 1
00101 1 1 0

[6/32] MicroEliece Chair for Embedded Security HGI

Table: Security of McEliece Depending on Parameters

Security Level Parameters Size Kpup Size Kec

(n, k,t) in KBits (G(z),P,S) in KBits
(60 bit) (1024, 644, 38) 644 (0.38, 10, 405)
(80 bit) (2048, 1751, 27) 3,502 (0.30,22,2994)
(256 bit) (6624, 5129, 115) 33,178 (1.47,104, 25690)

Suggestion for fixed key sizes and the achieved security levels are made in

[2]

[7/32] MicroEliece Chair for Embedded Security HGI

Encryption
Toy Example 2
m = (1101)
= mxGpw
1 1 1 10 0 0
1 100 1 0 0
= (@QOx971 5 0 1 1 0 1
010 1 1 10
= (1110010)
¢ = ¢ 4 e=(1110010) + (0000100)
= (1110110)

[8/32] MicroEliece Chair for Embedded Security HGI

Encryption
Toy Example 2
Y p
@ Encode the message as a
binary string m of length m = (1101)
k = mxGpw
1 1110 0 0
1 100 1 0 0
= MO)X97 9 0 1 1 0 1
010 1 1 10
= (1110010)
¢ = ¢ +e=(1110010) + (0000100)
= (1110110)

[8/32] MicroEliece Chair for Embedded Security HGI

Encryption
YP Toy Example 2
@ Encode the message as a

binary string m of length m = (1101)
k = mxGpw
11110 0 0
@ Compute the vector 110010 0
= (1101) x
¢’ = m x Gpyp of length n 100 1 1 0 1
010 1 1 10
= (1110010)
¢ = ¢ +e=(1110010) + (0000100)
= (1110110)

[8/32] MicroEliece Chair for Embedded Security HGI

Encryption
YP Toy Example 2
@ Encode the message as a

binary string m of length m = (1101)
k = mxGpw
11110 0 0
@ Compute the vector 110010 0
= (1101) x
¢’ = m x Gpyp of length n 100 1 1 0 1
_ 010 1 1 10
[+ =
Generate a random n-bit — (1110010)

vector e containing at

most t ones c = c +e=(1110010) + (0000100)

= (1110110)

[8/32] MicroEliece Chair for Embedded Security HGI

Encryption
YP Toy Example 2
@ Encode the message as a

binary string m of length m = (1101)
k = mxGpw
11110 0 0
@ Compute the vector 110010 0
= (1101) x
¢’ = m x Gpyp of length n 100 1 1 0 1
_ 010 1 1 10
[+ =
Generate a random n-bit — (1110010)

vector e containing at

most t ones ¢ = ¢ +e=(1110010) + (0000100)
@ Compute the ciphertext as = (1110110)
c=c +e

[8/32] MicroEliece Chair for Embedded Security HGI

Toy Example 3

c = (0110110)
c x P~ =(1000111)

o
|

Decryption
Now use the secret information to efficiently decode ¢ and
correct the error. Here the error is at position seven.

ecorrected = (10001 10)

Because G is in systematic form, the first 4 bits are the
message bits. By unscrambling with S~ we can recover
the original message.

Ceorrected = (1000110)
M = (1000)
1 1 0 1
’ m = mxS1=(1000)xJ: 1 90
1 0 O 1
= (1101)

[9/32] MicroEliece Chair for Embedded Security HGI

Toy Example 3

¢ = (0110110)
Decryption ¢ = cxPT!=(1000111)
@ Revert the Now use the secret information to efficiently decode ¢ and

permutation p correct the error. Here the error is at position seven.

=> e =cC- P_l ecorrected = (1000110)
Because G is in systematic form, the first 4 bits are the

message bits. By unscrambling with S~ we can recover
the original message.

Ceorrected = (1000110)
M = (1000)
1 1 0 1
’ m = mxS1=(1000)xJ: 1 90
1 0 O 1
= (1101)

[9/32] MicroEliece Chair for Embedded Security HGI

Decryption

o Revert the
permutation P
=>¢&=c P!

@ Use the decoding
algorithm for the
code C to decode
ctom

[9/32]

Toy Example 3

c = (0110110)
¢ x P71 =(1000111)

o
|

Now use the secret information to efficiently decode ¢ and
correct the error. Here the error is at position seven.

ecorrected = (1000110)
Because G is in systematic form, the first 4 bits are the

message bits. By unscrambling with S~ we can recover
the original message.

Ceorrected = (1000110)
M = (1000)
1 1 0 1
m = mxSl=(000)xqs 1 9 9
1 0 O 1
= (1101)
MicroEliece Chair for Embedded Security HGI

Decryption

o Revert the
permutation P
=>¢&=c P!

@ Use the decoding
algorithm for the
code C to decode
ctom

@ Compute
m=rm-S1

[9/32]

Toy Example 3

c = (0110110)
¢ x P71 =(1000111)

o
|

Now use the secret information to efficiently decode ¢ and
correct the error. Here the error is at position seven.

ecorrected = (1000110)
Because G is in systematic form, the first 4 bits are the

message bits. By unscrambling with S~ we can recover
the original message.

Ceorrected = (1000110)
M = (1000)
1 1 0 1
m = mxSl=(000)xqs 1 9 9
1 0 O 1
= (1101)
MicroEliece Chair for Embedded Security HGI

Decoding Goppa
Codes

@ Syndrome
computation

[10/32]

Algorithm 1 Decoding Goppa Codes

Input: Received codeword r with up to t er-

rors

Output: Recovered message m

1

o

o9 s N

Compute syndrome Syn(z) for codeword
r
T(z) + Syn(z)71
if T(z) =z then
0(z) «z
else
R(z) «+ /T(z) +z
Compute a(z) and b(z) with a(z) =
b(z) - R(z) mod G(z)
o(z) + a(z)? + z - b(2)?

9: end if

10:

11:

Determine roots of o(z), correct errors in
r which results in m
return M

MicroEliece Chair for Embedded Security HGI

Decoding Goppa
Codes

@ Syndrome
computation

@ Solve key
equation

[10/32]

Algorithm 2 Decoding Goppa Codes

Input: Received codeword r with up to t er-

rors

Output: Recovered message m

1

o

o9 s N

Compute syndrome Syn(z) for codeword
r
T(z) + Syn(z)71
if T(z) =z then
0(z) «z
else
R(z) «+ /T(z) +z
Compute a(z) and b(z) with a(z) =
b(z) - R(z) mod G(z)
o(z) + a(z)? + z - b(2)?

9: end if

10:

11:

Determine roots of o(z), correct errors in
r which results in m
return M

MicroEliece Chair for Embedded Security HGI

Decoding Goppa
Codes
@ Syndrome
computation
@ Solve key
equation
two times

polynomial
EEA

[10/32]

Algorithm 3 Decoding Goppa Codes

Input: Received codeword r with up to t er-

rors

Output: Recovered message m

1

o

o9 s N

Compute syndrome Syn(z) for codeword
r
T(z) + Syn(z)71
if T(z) =z then
0(z) «z
else
R(z) «+ /T(z) +z
Compute a(z) and b(z) with a(z) =
b(z) - R(z) mod G(z)
o(z) + a(z)? + z - b(2)?

9: end if

10:

11:

Determine roots of o(z), correct errors in
r which results in m
return M

MicroEliece Chair for Embedded Security HGI

Decoding Goppa
Codes

@ Syndrome
computation
@ Solve key
equation
two times
polynomial
EEA
polynomial
square root

[10/32]

Algorithm 4 Decoding Goppa Codes

Input: Received codeword r with up to t er-

rors

Output: Recovered message m

1

o

o9 s N

Compute syndrome Syn(z) for codeword
r
T(z) + Syn(z)71
if T(z) =z then
0(z) «z
else
R(z) «+ /T(z) +z
Compute a(z) and b(z) with a(z) =
b(z) - R(z) mod G(z)
o(z) + a(z)? + z - b(2)?

9: end if

10:

11:

Determine roots of o(z), correct errors in
r which results in m
return M

MicroEliece Chair for Embedded Security HGI

Decoding Goppa
Codes

@ Syndrome
computation

@ Solve key
equation

two times
polynomial
EEA
polynomial
square root
two
polynomial
squares

[10/32]

Algorithm 5 Decoding Goppa Codes

Input: Received codeword r with up to t er-

rors

Output: Recovered message m

1

Compute syndrome Syn(z) for codeword
r

2. T(z) « Syn(z)7!
3: if T(z) =z then
4 o(z)+z
5: else
6: R(z)« +/T(z)+z
7. Compute a(z) and b(z) with a(z) =
b(z) - R(z) mod G(z)
8: 0(z) + a(z)® + z- b(2)?
9: end if
10: Determine roots of o(z), correct errors in
r which results in m
11: return m
MicroEliece Chair for Embedded Security HGI

Decoding Goppa
Codes

@ Syndrome
computation
@ Solve key
equation
two times
polynomial
EEA
polynomial
square root
two
polynomial
squares

@ Searching roots
of a polynomial

[10/32]

Algorithm 6 Decoding Goppa Codes

Input: Received codeword r with up to t er-

rors

Output: Recovered message m

1

Compute syndrome Syn(z) for codeword
r

2. T(z) « Syn(z)7!
3: if T(z) =z then
4 o(z)+z
5: else
6: R(z)« +/T(z)+z
7. Compute a(z) and b(z) with a(z) =
b(z) - R(z) mod G(z)
8: 0(z) + a(z)® + z- b(2)?
9: end if
10: Determine roots of o(z), correct errors in
r which results in m
11: return m
MicroEliece Chair for Embedded Security HGI

© Adaptions
@ Generation of the Parity Check Matrix
@ Generation of the Scrambling Matrix

[11/32] MicroEliece Chair for Embedded Security HGI

Our model

Typically one tries to reduce the public key size. We try to reduce secret
key size. Why?

[11/32] MicroEliece Chair for Embedded Security HGI

Our model

Typically one tries to reduce the public key size. We try to reduce secret
key size. Why?

The large secret key must not be stored in an off-chip memory. It has to be
kept in the internal flash of the 4C and FPGA, respectively. Additional
memory needed to speed up decryption.

5
s
-

[11/32] MicroEliece Chair for Embedded Security HGI

Actually not the secret generator matrix is needed for decryption, but a
corresponding parity check matrix H. H is a (2048 x 297) matrix =
75 KByte. How can we save space?

Generation of the Parity Check Matrix H

[12/32] MicroEliece Chair for Embedded Security HGI

Actually not the secret generator matrix is needed for decryption, but a
corresponding parity check matrix H. H is a (2048 x 297) matrix =
75 KByte. How can we save space?

Generation of the Parity Check Matrix H

@ Very regular structure

[12/32] MicroEliece Chair for Embedded Security HGI

Actually not the secret generator matrix is needed for decryption, but a
corresponding parity check matrix H. H is a (2048 x 297) matrix =
75 KByte. How can we save space?

Generation of the Parity Check Matrix H
@ Very regular structure

@ Only goppa polynomial and support required to compute H.

[12/32] MicroEliece Chair for Embedded Security HGI

Actually not the secret generator matrix is needed for decryption, but a
corresponding parity check matrix H. H is a (2048 x 297) matrix =
75 KByte. How can we save space?

Generation of the Parity Check Matrix H
@ Very regular structure

@ Only goppa polynomial and support required to compute H.
@ Reverting the permutation P can be merged in.

[12/32] MicroEliece Chair for Embedded Security HGI

Actually not the secret generator matrix is needed for decryption, but a
corresponding parity check matrix H. H is a (2048 x 297) matrix =
75 KByte. How can we save space?

Generation of the Parity Check Matrix H
@ Very regular structure
@ Only goppa polynomial and support required to compute H.
@ Reverting the permutation P can be merged in.
@ Instead 75 KByte only 3 KByte

[12/32] MicroEliece Chair for Embedded Security HGI

Scrambling matrix S is a (1751 x 1751) matrix = 347 KByte. How can
we save space?

Generation of the Scrambling Matrix

[13/32] MicroEliece Chair for Embedded Security HGI

Scrambling matrix S is a (1751 x 1751) matrix = 347 KByte. How can
we save space?

Generation of the Scrambling Matrix

@ Sole requirement for S is invertibility.

[13/32] MicroEliece Chair for Embedded Security HGI

Scrambling matrix S is a (1751 x 1751) matrix = 347 KByte. How can
we save space?
Generation of the Scrambling Matrix

@ Sole requirement for S is invertibility.

@ About 33% of random matrices are invertible.

[13/32] MicroEliece Chair for Embedded Security HGI

Scrambling matrix S is a (1751 x 1751) matrix = 347 KByte. How can
we save space?

Generation of the Scrambling Matrix
@ Sole requirement for S is invertibility.

@ About 33% of random matrices are invertible.
@ Generate S~! with a PRNG on-the-fly from a small seed.

[13/32] MicroEliece Chair for Embedded Security HGI

Scrambling matrix S is a (1751 x 1751) matrix = 347 KByte. How can
we save space?

Generation of the Scrambling Matrix
@ Sole requirement for S is invertibility.
@ About 33% of random matrices are invertible.

@ Generate S~! with a PRNG on-the-fly from a small seed.

@ Assure invertibility during key generation.

[13/32] MicroEliece Chair for Embedded Security HGI

Scrambling matrix S is a (1751 x 1751) matrix = 347 KByte. How can
we save space?

Generation of the Scrambling Matrix
@ Sole requirement for S is invertibility.
About 33% of random matrices are invertible.
Generate S—! with a PRNG on-the-fly from a small seed.
Assure invertibility during key generation.
Instead 347 KByte only 80 bits (38.000 times smaller)

(]
(*]
(*]
(*]

[13/32] MicroEliece Chair for Embedded Security HGI

© Implementation
° Memory Requirements
o AVR

o FPGA

[14/32] MicroEliece Chair for Embedded Security HGI

For 80-bit security (m = 11, n = 2048, k = 1751, t = 27)
Table Size
Gpup Matrix 428 KByte
Goppa Polynomial | 308 bit
Support 22,528 bit
w Polynomial 297 bit
logtable 22,528 bit
anti-log table 22,528 bit
S—1 Matrix 347 KByte, reduced to 80 bit
P~! Matrix only 2,75 Kbyte as array
iG Matrix 428 KByte, not needed when G in standard form
Table: Sizes of Stored Values

[14/32] MicroEliece Chair for Embedded Security HGI

AVR Encryption

@ Read in Gpyp via UART or from external memory and store it to
SRAM. Only once at system start-up!

[15/32] MicroEliece Chair for Embedded Security HGI

AVR Encryption

@ Read in Gpyp via UART or from external memory and store it to
SRAM. Only once at system start-up!

@ Multiply message m with Gpyp.

[15/32] MicroEliece Chair for Embedded Security HGI

AVR Encryption

@ Read in Gpyp via UART or from external memory and store it to
SRAM. Only once at system start-up!

@ Multiply message m with Gpyp.

@ Distribute 27 errors.

[15/32] MicroEliece Chair for Embedded Security HGI

AVR Decryption

@ Compute Syndrome of ciphertext.

[16/32] MicroEliece Chair for Embedded Security HGI

AVR Decryption

@ Compute Syndrome of ciphertext.

Run time computation. Slower (size of a second), but only (8 Kbyte)
memory required

[16/32] MicroEliece Chair for Embedded Security HGI

AVR Decryption

@ Compute Syndrome of ciphertext.
Run time computation. Slower (size of a second), but only (8 Kbyte)
memory required
Use precomputed and pre-permuted values. Is fast, but large storage
needed (108 Kbyte). Our choice

[16/32] MicroEliece Chair for Embedded Security HGI

AVR Decryption

@ Compute Syndrome of ciphertext.
Run time computation. Slower (size of a second), but only (8 Kbyte)
memory required

Use precomputed and pre-permuted values. Is fast, but large storage
needed (108 Kbyte). Our choice

@ Syndrome decoding. TLU based field arithmetic(2 x 4 KBytes).

[16/32] MicroEliece Chair for Embedded Security HGI

AVR Decryption

@ Compute Syndrome of ciphertext.

Run time computation. Slower (size of a second), but only (8 Kbyte)
memory required

Use precomputed and pre-permuted values. Is fast, but large storage
needed (108 Kbyte). Our choice

@ Syndrome decoding. TLU based field arithmetic(2 x 4 KBytes).
@ Searching roots. Very expensive (55.296 multiplications and adds).

[16/32] MicroEliece Chair for Embedded Security HGI

AVR Decryption

@ Compute Syndrome of ciphertext.

Run time computation. Slower (size of a second), but only (8 Kbyte)
memory required

Use precomputed and pre-permuted values. Is fast, but large storage
needed (108 Kbyte). Our choice

@ Syndrome decoding. TLU based field arithmetic(2 x 4 KBytes).

@ Searching roots. Very expensive (55.296 multiplications and adds).
@ Revert substitution.

[16/32] MicroEliece Chair for Embedded Security HGI

AVR Decryption

@ Compute Syndrome of ciphertext.

Run time computation. Slower (size of a second), but only (8 Kbyte)
memory required

Use precomputed and pre-permuted values. Is fast, but large storage
needed (108 Kbyte). Our choice

@ Syndrome decoding. TLU based field arithmetic(2 x 4 KBytes).
@ Searching roots. Very expensive (55.296 multiplications and adds).

@ Revert substitution.

Use precomputed matrix. Reasonable fast, but too much memory
needed (374 KByte).

[16/32] MicroEliece Chair for Embedded Security HGI

AVR Decryption

@ Compute Syndrome of ciphertext.

Run time computation. Slower (size of a second), but only (8 Kbyte)
memory required

Use precomputed and pre-permuted values. Is fast, but large storage
needed (108 Kbyte). Our choice

@ Syndrome decoding. TLU based field arithmetic(2 x 4 KBytes).

@ Searching roots. Very expensive (55.296 multiplications and adds).
@ Revert substitution.

Use precomputed matrix. Reasonable fast, but too much memory
needed (374 KByte).

Run time computation. Slower, but only 80 bits memory required.
Stands or falls with speed of the PRNG. Our choice

[16/32] MicroEliece Chair for Embedded Security HGI

AVR-Decryption: Break Down of the Execution Time

Decode

Compute Syndrome

=LA 4) | Undo Permutation

Search & Correct Errors Undo Scrambling

Numbers shown are clock cycles x1000.

[17/32] MicroEliece Chair for Embedded Security

© Implementation
° Memory Requirements
o AVR

o FPGA

[18/32] MicroEliece Chair for Embedded Security HGI

FPGA:Overview of the encryption circuit

& PRNG
Buffer | forErrors
7 [—
7/
88
Matrix
Multiplier
3
02 = Row Counter
2% Matrix > Column Counter
58 FSM 3| Muttiplier L
= 4
y < —
“Access swich)
x

Buffer

A 4
[lle] mce_encrypt

UART

T

toplevel_encrypt

[18/32] MicroEliece Chair for Embedded Security HGI

FPGA:Overview of the decryption circuit

| -
Syndrom
Matrix P :,RN(_E Computation
Multiplier or S (8-way parallel)
o (PRESENT) T
l | | 5| | Polynomial EEA
: % § serial and small
FSM “1 12
< Chien search E
goppa_ | (27-way parallel| &
decode
‘ | | Log Table g
Anti-log Table | &
Buffer
| | =X
1/0 mce_decrypt |- 4-__Buffer | BRAM |
UART

toplevel _decrypt

[19/32]

MicroEliece

Chair for Embedded Security

HGI

FPGA-Decryption Old: Break Down of the Execution Time

Undo Permutation & Compute Syndrome

Decode

217 (24.4%)

Search & Correct Errors

Undo Scrambling

[20/32] MicroEliece Chair for Embedded Security HGI

Undo Scrambling

FPGA-Decryption New: Break Down of the Execution Time

211 (23.7%)

Sfjarc & Correct Errors
6.7 [

Undo Permutation & Compute Syndrome

SAVED

DA

© Intro

© McEliece

© Adaptions

© Implementation

© Results
© Conclusion

DA

Table: Implementation results of the McEliece scheme with
n =2048,k = 1751, t = 27 on the AVR ATxMegal92 uC and Spartan-3AN
XC3S1400AN-5 FPGA after PAR.

Resource Encryption Decryption Available
SRAM 512 Byte 12 kByte 16 kByte
% Flash Memory 684 Byte 130.4 kByte 192 kByte
External Memory 438 kByte — —
Slices 668 (6%) 9,400 (83%) 11,264
S LUTs 1044 (5%) 9,054 (40%) 22,528
& FFs 804 (4%) 12,870(57%) 22,528
BRAMs 3 (9%) 32 (100%) 32

[22/32]

MicroEliece Chair for Embedded Security

HGI

Table: Performance of McEliece implementations with n = 2048, k = 1751,t = 27
on the AVR ATxMegal92 1C and Spartan-3AN XC3S1400AN-5 FPGA.

Aspect ATxMegal92 1.C Spartan-3AN 1400
5 Maximum frequency 32 MHz 150 MHz
>
E ErTcrypt c'=m- Gpyp 12,635,477 cycles (7,889,200)161,480 cycles
w Inject errors c =c¢' 4+ z 1,136 cycles 398 cycles
Maximum frequency 32 MHz 110 MHz
5 Undo permutation ¢ - P~1 275,835 cycles combined with Syn(z)
'ﬁ_ Determine Syn(z) 1,412,514 cycles 69,116 cycles
S\ Compute T = Syn(z)~}! 1,164,402 cycles 4,346 cycles
5’ Compute /T + z 286,573 cycles 3,896 cycles
Solve Key Equation 318,082 cycles 1,958 cycles
Find & Correct errors 15,096,704 cycles 6,148 cycles
Undo scrambling i - S—1 1,196,984 cycles 217,800 cycles
[23/32] MicroEliece Chair for Embedded Security HGI

AVR-Implementation for 80 bit security: Timings

=3
<
B
&
@ AVR
2000
2
1000
o Scl
N N Q cheme
&3 chq ey G@*SQ QQ\Q’
¢ & o> & N & <8
SEN RS Q&%@
QSD

[24/32] MicroEliece Chair for Embedded Security

HGI

AVR-Implementation for 80 bit security: Timings

ms/op

@ AVR
» Encryption 3.5 times
slower than RSA and
two times slower than

ECC.

2000

1000

0l
Scheme
. 9 ’ < A
e\\o‘f N el N é\cﬁ N N Y
1\8) RS X@) \@'
i S
A A

[24/32] MicroEliece Chair for Embedded Security HGI

AVR-Implementation for 80 bit security: Timings

ms/op

2000

1000

[24/32]

<& © X « & Scheme
T s & &
N ?,\@ S

& <®

MicroEliece

@ AVR
» Encryption 3.5 times
slower than RSA and
two times slower than
ECC.
» Decryption about 5.5

times slower than ECC,

but five times faster
than RSA.

Chair for Embedded Security

HGI

AVR-Implementation for 80 bit security: Throughput

bits/sec

When taking the throughput
into account:

@ AVR

9000

8000+

7000+

6000

5000

4000

3000

2000

1000+

o9

Scheme

Yy Q
o @QQ\Q’

[25/32] MicroEliece Chair for Embedded Security HGI

AVR-Implementation for 80 bit security: Throughput

- When taking the throughput
90007 into account:
80007 o AVR
70001 » Encryption over 25
6000-1 times faster then ECC
5000-] and only two times
4000-] slower than RSA.
3000
20004
1000 l

| S

eﬂ-}"ﬁg& QQ\()Q Scheme
é\& *

[25/32] MicroEliece Chair for Embedded Security HGI

AVR-Implementation for 80 bit security: Throughput

bits/sec

When taking the throughput
into account:

@ AVR

» Encryption over 25
times faster then ECC
and only two times
slower than RSA.

» Decryption five times
faster than ECC and
eight times faster than

L A

& Scheme

9000

8000+

7000+

6000

5000

4000

3000

2000

1000+

[25/32] MicroEliece Chair for Embedded Security HGI

FPGA-Implementation for 80 bit security: Timings

ms/op

40
30 o FPGA
20

EY I b}

XQ’Q Scheme

[26/32] MicroEliece Chair for Embedded Security

HGI

FPGA-Implementation for 80 bit security: Timings

&
8
40
307 o FPGA
» Encryption over 47
20- times faster then RSA
and up to five times
10 faster than ECC.
Iy I B
é“ﬂQ Q&%Q“ \Q‘]} ~0\6Q Scheme
%\&e“ \&b N\t ©

[26/32] MicroEliece Chair for Embedded Security HGI

FPGA-Implementation for 80 bit security: Timings

ms/op

40
30

20

ry. ' kB

& N Q Scheme
A

A

)

x
ocs*‘ﬂ

< Q!
N

[26/32] MicroEliece

o FPGA

» Encryption over 47
times faster then RSA
and up to five times
faster than ECC.

» Decryption about two
times faster than ECC,
and 18 times faster
than RSA.

Chair for Embedded Security HGI

FPGA-Implementation for 80 bit security: Throughput

3 When taking throughput into
account:
o FPGA
10004

Sch
Cd‘,\ a&"ﬂQ‘ c}’\@} ch@ cheme
X ©

™
@\& %‘\&

HGI

MicroEliece Chair for Embedded Security

[27/32]

FPGA-Implementation for 80 bit security: Throughput

When taking throughput into
account:
o FPGA
» Encryption over 80
times faster then RSA
and 52 times faster
than ECC.

Kbits/sec

1000+

0l
Scheme

N
N
@Cv

S
S
Q\ar’

x x
& &
™ &

¥ A

MicroEliece Chair for Embedded Security HGI

[27/32]

FPGA-Implementation for 80 bit security: Throughput

When taking throughput into
account:
o FPGA
» Encryption over 80
o] times faster then RSA
and 52 times faster
1 than ECC.
» Decryption 20 times
faster than ECC, and
30 times faster than

Kbits/sec

20 31 RSA
| 'Y W
<« & N \@ cheme
c$ o) S 9
& o o\ ¢
& ® v
MicroEliece Chair for Embedded Security HGI

[27/32]

FPGA-Implementation for 80 bit security: Throughput2

8
=
E
@ Three separate algorithm
parts
2!
1000
1
0 Sch
{»Q)\ ‘Q\. “‘7}‘ %Q cheme
PO
W »

HGI

MicroEliece Chair for Embedded Security

[28/32]

FPGA-Implementation for 80 bit security: Throughput2

2
i .
@ Three separate algorithm
parts
» Syndrome computation
2!
1000
1
o Sch
X N N Q cheme
foe““d? o @v\@’ &
N N

HGI

MicroEliece Chair for Embedded Security

[28/32]

FPGA-Implementation for 80 bit security: Throughput2

2
i .
@ Three separate algorithm
parts
» Syndrome computation
» Decoding and error
correction
2!
1000
1
. Sch
‘{Q\ (ﬁQ‘ \“(Lb, C\%Q cheme
o o » IS
y"\&e A ¢ Q\% s

HGI

MicroEliece Chair for Embedded Security

[28/32]

FPGA-Implementation for 80 bit security: Throughput2

2
i .
@ Three separate algorithm
parts
» Syndrome computation
» Decoding and error
correction
; » Unscrambling
1000
1
o
QC‘@\ 6&“3?‘ ?’\@) @GO@ Scheme
& &
NG A

[28/32] MicroEliece Chair for Embedded Security HGI

FPGA-Implementation for 80 bit security: Throughput2

Kbits/sec

@ Three separate algorithm
parts
» Syndrome computation
» Decoding and error

correction
; » Unscrambling
10007 @ Pipelined version should
1 .
double (maybe triple) the
throughput
o Sch
& & g?'\@} CC\Q)Q .
@\& N

[28/32] MicroEliece Chair for Embedded Security HGI

Q Intro

© McEliece

© Adaptions

@ 'mplementation
© Results

@ Conclusion

DA

Conclusions
@ Proof of concept implementation for 8 bit C and low cost FPGAs

[29/32] MicroEliece Chair for Embedded Security HGI

Conclusions
@ Proof of concept implementation for 8 bit 1C and low cost FPGAs

@ 1C does not reach timing performance of classic schemes (throughput
is in the same order of magnitude)

[29/32] MicroEliece Chair for Embedded Security HGI

Conclusions
@ Proof of concept implementation for 8 bit 1C and low cost FPGAs

@ 1C does not reach timing performance of classic schemes (throughput
is in the same order of magnitude)

@ but FPGA implementation ROCKS

[29/32] MicroEliece Chair for Embedded Security HGI

Outlook

@ Build semantically secure version (also reduces public key size at the
cost of additional computations)

[30/32] MicroEliece Chair for Embedded Security HGI

Outlook

@ Build semantically secure version (also reduces public key size at the
cost of additional computations)

@ Better parameters for embedded systems? (GF(2%) or GF(21°))

[30/32] MicroEliece Chair for Embedded Security HGI

Outlook

@ Build semantically secure version (also reduces public key size at the
cost of additional computations)
@ Better parameters for embedded systems? (GF(2%) or GF(21°))

@ Use "Quasi-dyadic Goppa Codes" (R. Misoczki and P. Barreto,
SAC2009)

[30/32] MicroEliece Chair for Embedded Security HGI

Questions? \

Further reading

@ E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg.
On the inherent intractability of certain coding problems.
IEEE Trans. Information Theory, 24(3):384-386, 1978.

@ D. J. Bernstein, T. Lange, and C. Peters.
Attacking and defending the McEliece cryptosystem.
Cryptology ePrint Archive, Report 2008/318 "http://eprint.iacr.org/", 2008.
http://cr.yp.to/codes/mceliece-20080807 .pdf.

[32/32] MicroEliece Chair for Embedded Security HGI

http://eprint.iacr.org/
http://cr.yp.to/codes/mceliece-20080807.pdf

	Intro
	History
	Motivation

	McEliece
	Key Generation
	Encryption
	Decryption

	Adaptions
	Generation of the Parity Check Matrix
	Generation of the Scrambling Matrix

	Implementation
	Memory Requirements
	AVR
	FPGA

	Results
	Conclusion

