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HistoryProposed 1978 by Robert McElieceMakes use of linear error correcting code (originally Goppa Codes)Underlying problem (decoding of generic linear codes) is NP-hard [1]Up to now unbroken, but not well studied like RSA, ECC
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Why not earlier?Memory requirements prevent implementation on �Cs and FPGAs(450 KB for 80 bit security)But today o�-the-shelf hardware contains su�cient memory
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Key GenerationRandomly select a binary (n × k) generator matrix G of a code Ccapable of correcting t errorsSelect a random (k × k) binary non-singular scrambler matrix SSelect a random (n × n) permutation matrix PCompute the (k × n) matrix Gpub = S × G × PPublic key is (Gpub , t); Private key is (S ,C ,P).
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Key GenerationRandomly select a binary (n × k) generator matrix G of a code Ccapable of correcting t errorsSelect a random (k × k) binary non-singular scrambler matrix SSelect a random (n × n) permutation matrix PCompute the (k × n) matrix Gpub = S × G × PPublic key is (Gpub , t); Private key is (S ,C ,P).In practice n determines the ciphertext size, k the plaintext size and tcorresponds to the number of errors added.
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Toy Example 1For simpli�cation (and size), a single error correcting (7, 4) Hamming code
ℋ is used.G =
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Table: Security of McEliece Depending on ParametersSecurity Level Parameters Size Kpub Size Ksec
(n, k, t) in KBits (G (z),P, S) in KBits(60 bit) (1024, 644, 38) 644 (0.38, 10, 405)(80 bit) (2048, 1751, 27) 3, 502 (0.30, 22, 2994)(256 bit) (6624, 5129, 115) 33, 178 (1.47, 104, 25690)Suggestion for �xed key sizes and the achieved security levels are made in[2].
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EncryptionEncode the message as abinary string m of lengthkCompute the vectorc ′ = m × Gpub of length nGenerate a random n-bitvector e containing atmost t onesCompute the ciphertext asc = c ′ + e
Toy Example 2m = (1101)c′ = m× Gpub

= (1101) ×⎧
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= (1110010)c = c′ + e = (1110010) + (0000100)
= (1110110)
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DecryptionRevert thepermutation P=> ĉ = c ⋅ P−1Use the decodingalgorithm for thecode C to decodeĉ to m̂Computem = m̂ ⋅ S−1

Toy Example 3c = (0110110)ĉ = c × P−1 = (1000111)Now use the secret information to e�ciently decode ĉ andcorrect the error. Here the error is at position seven.ĉcorrected = (1000110)Because G is in systematic form, the �rst 4 bits are themessage bits. By unscrambling with S−1 we can recoverthe original message.ĉcorrected = (1000110)m̂ = (1000)m = m̂× S−1 = (1000) ×⎧
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Decoding GoppaCodesSyndromecomputationSolve keyequation
▶ two timespolynomialEEA
▶ polynomialsquare root
▶ twopolynomialsquaresSearching rootsof a polynomial

Algorithm 1 Decoding Goppa CodesInput: Received codeword r with up to t er-rorsOutput: Recovered message m̂1: Compute syndrome Syn(z) for codewordr2: T (z)← Syn(z)−13: if T (z) = z then4: �(z)← z5: else6: R(z)←√T (z) + z7: Compute a(z) and b(z) with a(z) ≡b(z) ⋅ R(z) mod G (z)8: �(z)← a(z)2 + z ⋅ b(z)29: end if10: Determine roots of �(z), correct errors inr which results in m̂11: return m̂[10/32] MicroEliece Chair for Embedded Security HGI
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▶ two timespolynomialEEA
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Our modelTypically one tries to reduce the public key size. We try to reduce secretkey size. Why?
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Our modelTypically one tries to reduce the public key size. We try to reduce secretkey size. Why?
The large secret key must not be stored in an o�-chip memory. It has to bekept in the internal �ash of the �C and FPGA, respectively. Additionalmemory needed to speed up decryption.
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Actually not the secret generator matrix is needed for decryption, but acorresponding parity check matrix H. H is a (2048 × 297) matrix =75 KByte. How can we save space?Generation of the Parity Check Matrix HVery regular structureOnly goppa polynomial and support required to compute H.Reverting the permutation P can be merged in.Instead 75 KByte only 3 KByte
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Scrambling matrix S is a (1751× 1751) matrix = 347 KByte. How canwe save space?Generation of the Scrambling MatrixSole requirement for S is invertibility.About 33% of random matrices are invertible.Generate S−1 with a PRNG on-the-�y from a small seed.Assure invertibility during key generation.Instead 347 KByte only 80 bits (38.000 times smaller)
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1 Intro2 McEliece3 Adaptions4 ImplementationMemory RequirementsAVRFPGA5 Results6 Conclusion
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For 80-bit security (m = 11, n = 2048, k = 1751, t = 27)Table SizeGpub Matrix 428 KByteGoppa Polynomial 308 bitSupport 22,528 bit
! Polynomial 297 bitlogtable 22,528 bitanti-log table 22,528 bitS−1 Matrix 347 KByte, reduced to 80 bitP−1 Matrix only 2,75 Kbyte as arrayiG Matrix 428 KByte, not needed when G in standard formTable: Sizes of Stored Values
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AVR EncryptionRead in Gpub via UART or from external memory and store it toSRAM. Only once at system start-up!Multiply message m with Gpub.Distribute 27 errors.
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AVR DecryptionCompute Syndrome of ciphertext.
▶ Run time computation. Slower (size of a second), but only (8 Kbyte)memory required
▶ Use precomputed and pre-permuted values. Is fast, but large storageneeded (108 Kbyte). Our choiceSyndrome decoding. TLU based �eld arithmetic(2× 4 KBytes).Searching roots. Very expensive (55.296 multiplications and adds).Revert substitution.
▶ Use precomputed matrix. Reasonable fast, but too much memoryneeded (374 KByte).
▶ Run time computation. Slower, but only 80 bits memory required.Stands or falls with speed of the PRNG. Our choice[16/32] MicroEliece Chair for Embedded Security HGI
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AVR-Decryption: Break Down of the Execution Time
Compute Syndrome

Decode

Search & Correct Errors Undo Scrambling

Undo Permutation

1412 ( 7.2% )

1768 ( 9% )

15096 ( 76.4% ) 1196 ( 6.1% )

275 ( 1.4% )

Numbers shown are clock cycles x1000.[17/32] MicroEliece Chair for Embedded Security HGI
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FPGA:Overview of the encryption circuit
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FPGA:Overview of the decryption circuit
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FPGA-Decryption Old: Break Down of the Execution Time
Undo Permutation & Compute Syndrome

Decode

Search & Correct Errors

Undo Scrambling

360 ( 40.4% )

1.4 ( 0.2% )

312 ( 35% )

217 ( 24.4% )
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FPGA-Decryption New: Break Down of the Execution Time
Undo Permutation & Compute Syndrome

Decode
Search & Correct Errors

Undo Scrambling

SAVED

60 ( 6.7% )

10 ( 1.1% )

6.7 ( 0.8% )

211 ( 23.7% )

602 ( 67.7% )
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Table: Implementation results of the McEliece scheme withn = 2048, k = 1751, t = 27 on the AVR ATxMega192 �C and Spartan-3ANXC3S1400AN-5 FPGA after PAR.Resource Encryption Decryption Available
�

C SRAM 512Byte 12 kByte 16 kByteFlash Memory 684Byte 130.4 kByte 192 kByteExternal Memory 438 kByte − −FPGA Slices 668 (6%) 9,400 (83%) 11,264LUTs 1044 (5%) 9,054 (40%) 22,528FFs 804 (4%) 12,870(57%) 22,528BRAMs 3 (9%) 32 (100%) 32
[22/32] MicroEliece Chair for Embedded Security HGI



Table: Performance of McEliece implementations with n = 2048, k = 1751, t = 27on the AVR ATxMega192 �C and Spartan-3AN XC3S1400AN-5 FPGA.Aspect ATxMega192 �C Spartan-3AN 1400Encrypt. Maximum frequency 32MHz 150MHzEncrypt c‘ = m ⋅ Gpub 12,635,477 cycles (7,889,200)161,480 cyclesInject errors c = c‘ + z 1,136 cycles 398 cycles
Decryption Maximum frequency 32MHz 110MHzUndo permutation c ⋅ P−1 275,835 cycles combined with Syn(z)Determine Syn(z) 1,412,514 cycles 69,116 cyclesCompute T = Syn(z)−1 1,164,402 cycles 4,346 cyclesCompute √T + z 286,573 cycles 3,896 cyclesSolve Key Equation 318,082 cycles 1,958 cyclesFind & Correct errors 15,096,704 cycles 6,148 cyclesUndo scrambling m̂ ⋅ S−1 1,196,984 cycles 217,800 cycles[23/32] MicroEliece Chair for Embedded Security HGI



AVR-Implementation for 80 bit security: Timings
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▶ Encryption 3.5 timesslower than RSA andtwo times slower thanECC.
▶ Decryption about 5.5times slower than ECC,but �ve times fasterthan RSA.
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AVR-Implementation for 80 bit security: Throughput
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When taking the throughputinto account:AVR
▶ Encryption over 25times faster then ECCand only two timesslower than RSA.
▶ Decryption �ve timesfaster than ECC andeight times faster thanRSA.
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FPGA-Implementation for 80 bit security: Timings
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FPGA-Implementation for 80 bit security: Throughput
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When taking throughput intoaccount:FPGA
▶ Encryption over 80times faster then RSAand 52 times fasterthan ECC.
▶ Decryption 20 timesfaster than ECC, and30 times faster thanRSA.
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FPGA-Implementation for 80 bit security: Throughput2
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▶ Decoding and errorcorrection
▶ UnscramblingPipelined version shoulddouble (maybe triple) thethroughput
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ConclusionsProof of concept implementation for 8 bit �C and low cost FPGAs
�C does not reach timing performance of classic schemes (throughputis in the same order of magnitude)but FPGA implementation ROCKS
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OutlookBuild semantically secure version (also reduces public key size at thecost of additional computations)Better parameters for embedded systems? ( GF (28) or GF (216) )Use "Quasi-dyadic Goppa Codes" (R. Misoczki and P. Barreto,SAC2009)
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EndQuestions?
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Further readingE. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg.On the inherent intractability of certain coding problems.IEEE Trans. Information Theory, 24(3):384�386, 1978.D. J. Bernstein, T. Lange, and C. Peters.Attacking and defending the McEliece cryptosystem.Cryptology ePrint Archive, Report 2008/318 "http://eprint.iacr.org/", 2008.http://cr.yp.to/codes/mceliece-20080807.pdf .
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