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History
@ Proposed 1978 by Robert McEliece
@ Makes use of linear error correcting code (originally Goppa Codes)
@ Underlying problem (decoding of generic linear codes) is NP-hard [1]
@ Up to now unbroken, but not well studied like RSA, ECC
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Why not earlier?

@ Memory requirements prevent implementation on uCs and FPGAs
(450 KB for 80 bit security)
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Why not earlier?

@ Memory requirements prevent implementation on uCs and FPGAs
(450 KB for 80 bit security)

@ But today off-the-shelf hardware contains sufficient memory

Why now?
@ Except large keys, McEliece is very efficient

@ Existence of quantum computers are a threat to systems based on the
discrete log (DLP) and factorization (FP) problem

@ Generally larger diversification for future public key systems is desirable
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McEliece
° @ Key Generation

@ Encryption
@ Decryption
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Key Generation

@ Randomly select a binary (n x k) generator matrix G of a code C
capable of correcting t errors
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@ Randomly select a binary (n x k) generator matrix G of a code C
capable of correcting t errors

@ Select a random (k x k) binary non-singular scrambler matrix S
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o Compute the (k x n) matrix Gpyp =S x G x P
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@ Randomly select a binary (n x k) generator matrix G of a code C
capable of correcting t errors

@ Select a random (k x k) binary non-singular scrambler matrix S
@ Select a random (n x n) permutation matrix P

o Compute the (k x n) matrix Gpyp =S x G x P

@ Public key is (Gpyp, t); Private key is (S, C, P).
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Key Generation

@ Randomly select a binary (n x k) generator matrix G of a code C
capable of correcting t errors

@ Select a random (k x k) binary non-singular scrambler matrix S
@ Select a random (n x n) permutation matrix P

o Compute the (k x n) matrix Gpyp =S x G x P

@ Public key is (Gpyp, t); Private key is (S, C, P).

In practice n determines the ciphertext size, k the plaintext size and t
corresponds to the number of errors added.
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Toy Example 1
For simplification (and size), a single error correcting (7,4) Hamming code
H is used.
01 00 00 O
00 01 00O
1 000 1 1 0 11 0 1 00 0 0 0 0 1
c_Jor o010 1{s Jr oo 1l, J1 00000 o0
=90 0 1 0 0 0 1(>~ Yo 1 1 1("TY0o 0 1 0 0 0 O
00 01 1 1 0 1 1 0 0 0000 01 0
01 00 00 O
0000 1 00
11110 0 0
110010 0
Cpup =S+GxP =47 4 ¢ 1 1 ¢ 1
00101 1 1 0
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Table: Security of McEliece Depending on Parameters

Security Level Parameters Size Kpup Size Kec

(n, k,t) in KBits (G(z),P,S) in KBits
(60 bit) (1024, 644, 38) 644 (0.38, 10, 405)
(80 bit) (2048, 1751, 27) 3,502 (0.30,22,2994)
(256 bit) (6624, 5129, 115) 33,178 (1.47,104, 25690)

Suggestion for fixed key sizes and the achieved security levels are made in

[2]

[7/32] MicroEliece Chair for Embedded Security HGI



Encryption
Toy Example 2
m = (1101)
= mxGpw
1 1 1 10 0 0
1 100 1 0 0
= (@QOx971 5 0 1 1 0 1
010 1 1 10
= (1110010)
¢ = ¢ 4 e=(1110010) + (0000100)
= (1110110)
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Encryption
Toy Example 2
Y p
@ Encode the message as a
binary string m of length m = (1101)
k = mxGpw
1 1110 0 0
1 100 1 0 0
= MO)X97 9 0 1 1 0 1
010 1 1 10
= (1110010)
¢ = ¢ +e=(1110010) + (0000100)
= (1110110)
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Encryption
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@ Encode the message as a

binary string m of length m = (1101)
k = mxGpw
11110 0 0
@ Compute the vector 110010 0
= (1101) x
¢’ = m x Gpyp of length n 100 1 1 0 1
_ 010 1 1 10
[+ =
Generate a random n-bit —  (1110010)

vector e containing at

most t ones c = c +e=(1110010) + (0000100)
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Encryption
YP Toy Example 2
@ Encode the message as a

binary string m of length m = (1101)
k = mxGpw
11110 0 0
@ Compute the vector 110010 0
= (1101) x
¢’ = m x Gpyp of length n 100 1 1 0 1
_ 010 1 1 10
[+ =
Generate a random n-bit —  (1110010)

vector e containing at

most t ones ¢ = ¢ +e=(1110010) + (0000100)
@ Compute the ciphertext as = (1110110)
c=c +e
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Toy Example 3

c = (0110110)
c x P~ =(1000111)

o
|

Decryption
Now use the secret information to efficiently decode ¢ and
correct the error. Here the error is at position seven.

ecorrected = (10001 10)

Because G is in systematic form, the first 4 bits are the
message bits. By unscrambling with S~ we can recover
the original message.

Ceorrected = (1000110)
M = (1000)
1 1 0 1
’ m = mxS1=(1000)xJ: 1 90
1 0 O 1
= (1101)
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Toy Example 3

¢ = (0110110)
Decryption ¢ = cxPT!=(1000111)
@ Revert the Now use the secret information to efficiently decode ¢ and

permutation p correct the error. Here the error is at position seven.

=> e =cC- P_l ecorrected = (1000110)
Because G is in systematic form, the first 4 bits are the
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Decryption

o Revert the
permutation P
=>¢&=c P!

@ Use the decoding
algorithm for the
code C to decode
ctom
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Now use the secret information to efficiently decode ¢ and
correct the error. Here the error is at position seven.

ecorrected = (1000110)
Because G is in systematic form, the first 4 bits are the

message bits. By unscrambling with S~ we can recover
the original message.

Ceorrected = (1000110)
M = (1000)
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Decryption

o Revert the
permutation P
=>¢&=c P!

@ Use the decoding
algorithm for the
code C to decode
ctom

@ Compute
m=rm-S1
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Toy Example 3

c = (0110110)
¢ x P71 =(1000111)

o
|

Now use the secret information to efficiently decode ¢ and
correct the error. Here the error is at position seven.

ecorrected = (1000110)
Because G is in systematic form, the first 4 bits are the

message bits. By unscrambling with S~ we can recover
the original message.

Ceorrected = (1000110)
M = (1000)
1 1 0 1
m = mxSl=(000)xqs 1 9 9
1 0 O 1
= (1101)
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Decoding Goppa
Codes

@ Syndrome
computation
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Algorithm 1 Decoding Goppa Codes

Input: Received codeword r with up to t er-

rors

Output: Recovered message m

1

o

o9 s N

Compute syndrome Syn(z) for codeword
r
T(z) + Syn(z)71
if T(z) =z then
0(z) «z
else
R(z) «+ /T(z) +z
Compute a(z) and b(z) with a(z) =
b(z) - R(z) mod G(z)
o(z) + a(z)? + z - b(2)?

9: end if

10:

11:

Determine roots of o(z), correct errors in
r which results in m
return M
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Algorithm 2 Decoding Goppa Codes

Input: Received codeword r with up to t er-

rors

Output: Recovered message m

1

o

o9 s N

Compute syndrome Syn(z) for codeword
r
T(z) + Syn(z)71
if T(z) =z then
0(z) «z
else
R(z) «+ /T(z) +z
Compute a(z) and b(z) with a(z) =
b(z) - R(z) mod G(z)
o(z) + a(z)? + z - b(2)?

9: end if

10:

11:

Determine roots of o(z), correct errors in
r which results in m
return M
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Decoding Goppa
Codes
@ Syndrome
computation
@ Solve key
equation
two times

polynomial
EEA
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Algorithm 3 Decoding Goppa Codes

Input: Received codeword r with up to t er-

rors

Output: Recovered message m

1

o

o9 s N

Compute syndrome Syn(z) for codeword
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return M
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Decoding Goppa
Codes

@ Syndrome
computation
@ Solve key
equation
two times
polynomial
EEA
polynomial
square root
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Algorithm 4 Decoding Goppa Codes

Input: Received codeword r with up to t er-

rors

Output: Recovered message m

1

o

o9 s N

Compute syndrome Syn(z) for codeword
r
T(z) + Syn(z)71
if T(z) =z then
0(z) «z
else
R(z) «+ /T(z) +z
Compute a(z) and b(z) with a(z) =
b(z) - R(z) mod G(z)
o(z) + a(z)? + z - b(2)?

9: end if
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11:

Determine roots of o(z), correct errors in
r which results in m
return M
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Decoding Goppa
Codes

@ Syndrome
computation

@ Solve key
equation

two times
polynomial
EEA
polynomial
square root
two
polynomial
squares
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Algorithm 5 Decoding Goppa Codes

Input: Received codeword r with up to t er-

rors

Output: Recovered message m

1

Compute syndrome Syn(z) for codeword
r

2. T(z) « Syn(z)7!
3: if T(z) =z then
4 o(z)+z
5: else
6: R(z)« +/T(z)+z
7. Compute a(z) and b(z) with a(z) =
b(z) - R(z) mod G(z)
8:  0(z) + a(z)® + z- b(2)?
9: end if
10: Determine roots of o(z), correct errors in
r which results in m
11: return m
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Decoding Goppa
Codes

@ Syndrome
computation
@ Solve key
equation
two times
polynomial
EEA
polynomial
square root
two
polynomial
squares

@ Searching roots
of a polynomial
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Algorithm 6 Decoding Goppa Codes

Input: Received codeword r with up to t er-

rors

Output: Recovered message m

1

Compute syndrome Syn(z) for codeword
r

2. T(z) « Syn(z)7!
3: if T(z) =z then
4 o(z)+z
5: else
6: R(z)« +/T(z)+z
7. Compute a(z) and b(z) with a(z) =
b(z) - R(z) mod G(z)
8:  0(z) + a(z)® + z- b(2)?
9: end if
10: Determine roots of o(z), correct errors in
r which results in m
11: return m
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© Adaptions
@ Generation of the Parity Check Matrix
@ Generation of the Scrambling Matrix
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Our model

Typically one tries to reduce the public key size. We try to reduce secret
key size. Why?
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Our model

Typically one tries to reduce the public key size. We try to reduce secret
key size. Why?

The large secret key must not be stored in an off-chip memory. It has to be
kept in the internal flash of the 4C and FPGA, respectively. Additional
memory needed to speed up decryption.

5
s
-
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Actually not the secret generator matrix is needed for decryption, but a
corresponding parity check matrix H. H is a (2048 x 297) matrix =
75 KByte. How can we save space?

Generation of the Parity Check Matrix H
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Actually not the secret generator matrix is needed for decryption, but a
corresponding parity check matrix H. H is a (2048 x 297) matrix =
75 KByte. How can we save space?

Generation of the Parity Check Matrix H
@ Very regular structure
@ Only goppa polynomial and support required to compute H.
@ Reverting the permutation P can be merged in.
@ Instead 75 KByte only 3 KByte
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Scrambling matrix S is a (1751 x 1751) matrix = 347 KByte. How can
we save space?

Generation of the Scrambling Matrix
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@ About 33% of random matrices are invertible.
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Scrambling matrix S is a (1751 x 1751) matrix = 347 KByte. How can
we save space?

Generation of the Scrambling Matrix
@ Sole requirement for S is invertibility.
@ About 33% of random matrices are invertible.

@ Generate S~! with a PRNG on-the-fly from a small seed.

@ Assure invertibility during key generation.
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Scrambling matrix S is a (1751 x 1751) matrix = 347 KByte. How can
we save space?

Generation of the Scrambling Matrix
@ Sole requirement for S is invertibility.
About 33% of random matrices are invertible.
Generate S—! with a PRNG on-the-fly from a small seed.
Assure invertibility during key generation.
Instead 347 KByte only 80 bits (38.000 times smaller)

(]
(*]
(*]
(*]
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© Implementation
° Memory Requirements
o AVR

o FPGA
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For 80-bit security (m = 11, n = 2048, k = 1751, t = 27)
Table Size
Gpup Matrix 428 KByte
Goppa Polynomial | 308 bit
Support 22,528 bit
w Polynomial 297 bit
logtable 22,528 bit
anti-log table 22,528 bit
S—1 Matrix 347 KByte, reduced to 80 bit
P~! Matrix only 2,75 Kbyte as array
iG Matrix 428 KByte, not needed when G in standard form
Table: Sizes of Stored Values
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AVR Encryption

@ Read in Gpyp via UART or from external memory and store it to
SRAM. Only once at system start-up!
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AVR Encryption

@ Read in Gpyp via UART or from external memory and store it to
SRAM. Only once at system start-up!

@ Multiply message m with Gpyp.

[15/32] MicroEliece Chair for Embedded Security HGI



AVR Encryption

@ Read in Gpyp via UART or from external memory and store it to
SRAM. Only once at system start-up!

@ Multiply message m with Gpyp.

@ Distribute 27 errors.
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AVR Decryption

@ Compute Syndrome of ciphertext.
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memory required
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AVR Decryption
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Run time computation. Slower (size of a second), but only (8 Kbyte)
memory required

Use precomputed and pre-permuted values. Is fast, but large storage
needed (108 Kbyte). Our choice

@ Syndrome decoding. TLU based field arithmetic(2 x 4 KBytes).

@ Searching roots. Very expensive (55.296 multiplications and adds).
@ Revert substitution.
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AVR Decryption

@ Compute Syndrome of ciphertext.

Run time computation. Slower (size of a second), but only (8 Kbyte)
memory required

Use precomputed and pre-permuted values. Is fast, but large storage
needed (108 Kbyte). Our choice

@ Syndrome decoding. TLU based field arithmetic(2 x 4 KBytes).
@ Searching roots. Very expensive (55.296 multiplications and adds).

@ Revert substitution.

Use precomputed matrix. Reasonable fast, but too much memory
needed (374 KByte).
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AVR Decryption

@ Compute Syndrome of ciphertext.

Run time computation. Slower (size of a second), but only (8 Kbyte)
memory required

Use precomputed and pre-permuted values. Is fast, but large storage
needed (108 Kbyte). Our choice

@ Syndrome decoding. TLU based field arithmetic(2 x 4 KBytes).

@ Searching roots. Very expensive (55.296 multiplications and adds).
@ Revert substitution.

Use precomputed matrix. Reasonable fast, but too much memory
needed (374 KByte).

Run time computation. Slower, but only 80 bits memory required.
Stands or falls with speed of the PRNG. Our choice
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AVR-Decryption: Break Down of the Execution Time

Decode

Compute Syndrome

=LA 4) | Undo Permutation

Search & Correct Errors Undo Scrambling

Numbers shown are clock cycles x1000.
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© Implementation
° Memory Requirements
o AVR

o FPGA
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FPGA:Overview of the encryption circuit

& PRNG
Buffer | forErrors
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Matrix
Multiplier
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[18/32] MicroEliece Chair for Embedded Security HGI



FPGA:Overview of the decryption circuit

| -
Syndrom
Matrix P :,RN(_E Computation
Multiplier or S (8-way parallel)
o (PRESENT) T
l | | 5| | Polynomial EEA
: % § serial and small
FSM “1 12
< Chien search E
goppa_ | (27-way parallel| &
decode
‘ | | Log Table g
Anti-log Table | &
Buffer
| | =X
1/0 mce_decrypt |- 4-__Buffer | BRAM |
UART

toplevel _decrypt
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FPGA-Decryption Old: Break Down of the Execution Time

Undo Permutation & Compute Syndrome

Decode

217 (24.4% )

Search & Correct Errors

Undo Scrambling
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Undo Scrambling

FPGA-Decryption New: Break Down of the Execution Time

211 (23.7% )

Sfjarc & Correct Errors
6.7 [

Undo Permutation & Compute Syndrome

SAVED
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Table: Implementation results of the McEliece scheme with
n =2048,k = 1751, t = 27 on the AVR ATxMegal92 uC and Spartan-3AN
XC3S1400AN-5 FPGA after PAR.

Resource Encryption Decryption Available
SRAM 512 Byte 12 kByte 16 kByte
% Flash Memory 684 Byte 130.4 kByte 192 kByte
External Memory 438 kByte — —
Slices 668 (6%) 9,400 (83%) 11,264
S LUTs 1044 (5%) 9,054 (40%) 22,528
& FFs 804 (4%) 12,870(57%) 22,528
BRAMs 3 (9%) 32 (100%) 32
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Table: Performance of McEliece implementations with n = 2048, k = 1751,t = 27
on the AVR ATxMegal92 1C and Spartan-3AN XC3S1400AN-5 FPGA.

Aspect ATxMegal92 1.C Spartan-3AN 1400
5 Maximum frequency 32 MHz 150 MHz
>
E ErTcrypt c'=m- Gpyp 12,635,477 cycles (7,889,200)161,480 cycles
w Inject errors c =c¢' 4+ z 1,136 cycles 398 cycles
Maximum frequency 32 MHz 110 MHz
5 Undo permutation ¢ - P~1 275,835 cycles combined with Syn(z)
'ﬁ_ Determine Syn(z) 1,412,514 cycles 69,116 cycles
S\ Compute T = Syn(z)~}! 1,164,402 cycles 4,346 cycles
5’ Compute /T + z 286,573 cycles 3,896 cycles
Solve Key Equation 318,082 cycles 1,958 cycles
Find & Correct errors 15,096,704 cycles 6,148 cycles
Undo scrambling i - S—1 1,196,984 cycles 217,800 cycles
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AVR-Implementation for 80 bit security: Timings
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AVR-Implementation for 80 bit security: Timings
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AVR-Implementation for 80 bit security: Timings
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AVR-Implementation for 80 bit security: Throughput
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AVR-Implementation for 80 bit security: Throughput

- When taking the throughput
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AVR-Implementation for 80 bit security: Throughput
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FPGA-Implementation for 80 bit security: Timings
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FPGA-Implementation for 80 bit security: Timings
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FPGA-Implementation for 80 bit security: Timings
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times faster then RSA
and up to five times
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FPGA-Implementation for 80 bit security: Throughput
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FPGA-Implementation for 80 bit security: Throughput

When taking throughput into
account:
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FPGA-Implementation for 80 bit security: Throughput

When taking throughput into
account:
o FPGA
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FPGA-Implementation for 80 bit security: Throughput2
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FPGA-Implementation for 80 bit security: Throughput2
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FPGA-Implementation for 80 bit security: Throughput2
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FPGA-Implementation for 80 bit security: Throughput2
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FPGA-Implementation for 80 bit security: Throughput2
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@ 1C does not reach timing performance of classic schemes (throughput
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Conclusions
@ Proof of concept implementation for 8 bit 1C and low cost FPGAs

@ 1C does not reach timing performance of classic schemes (throughput
is in the same order of magnitude)

@ but FPGA implementation ROCKS
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Outlook

@ Build semantically secure version (also reduces public key size at the
cost of additional computations)
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@ Better parameters for embedded systems? ( GF(2%) or GF(21°) )
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Outlook

@ Build semantically secure version (also reduces public key size at the
cost of additional computations)
@ Better parameters for embedded systems? ( GF(2%) or GF(21°) )

@ Use "Quasi-dyadic Goppa Codes" (R. Misoczki and P. Barreto,
SAC2009)
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Further reading

@ E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg.
On the inherent intractability of certain coding problems.
IEEE Trans. Information Theory, 24(3):384-386, 1978.

@ D. J. Bernstein, T. Lange, and C. Peters.
Attacking and defending the McEliece cryptosystem.
Cryptology ePrint Archive, Report 2008/318 "http://eprint.iacr.org/", 2008.
http://cr.yp.to/codes/mceliece-20080807 .pdf.
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