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Multivariate PKCs

P:weK”iix:Msw—chi%erz:MTy—FcTEK’"

@ Public map of a typical multivariate PKC over base field K = IF,

S and T affine and invertible

Q quadratic, known as as the central map
For encryption schemes, n < m

For signature schemes, n > m

v vy VvYy

@ Future-proof against quantum computers

@ Fast because MPKCs replace arithmetic operations on large units by

faster operations on many small units
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Unbalanced Oil and Vinegar

of! of, ol - af)
e |00 ol Loy o)
O 0 0
Othrl,l av+1,v
i an';)l af,i,v 0 0 |

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 5/29



Rainbow-like Signatures

Stage-wise UOV

e For0<wvi<w<---<vyp1=n
> 5/22{1,2,...,V/}

» O = {V/+1,...,V/+1}

> 0y = V/+1—V/=|O/|

@ Q:x=(x1,..., %) = Y= Vvy41s---,¥n)
> Yk = qk(x), with following form if v, < k < vj41
k K k
D DR R SR TR o
i<j<v iI<vi<j<vizi i<vig1
@ Given all y; with v; </ < vj4; and all x; with j < v, we can compute

Xy/41,- -5 Xy, Via elimination
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TTS: Rainbow with Sparse Middle

@ Has a sparse Q

e Q7! needs solving just linear equations, like in Rainbow
e Example from 2004: TTS(20,28)

7 .
Yi = Xi+ i1 PijXjXey(i+jmod9): i =8,...,16
Yir = X117 + P17,1X1X6 + P17,2X2X5 + P17,3X3Xa
+Pp17,4X9X16 + P17,5X10X15 + P17,6X11X14 + P17,7X12X13
Y18 = X18 + p18,1XeX7 + P18,2X3X6 + P18,3X4Xs5
+P18,4X10X17 + P18,5X11X16 1+ P18,6X12X15 1 P18,7X13X14
i
Yi = Xi+ Pi0Xi—11Xi—9 + X i_19 Pi,j—18X2(i—j)— (i mod 2)Xj

27 :
+ D itit1 Pij—18Xi—jt10Xj, 1 = 19,...,27
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The C* Scheme

@ Proposed by Matsumoto and Imai in 1988
@ Broken by Patarin in 1995

@ The central map is a monomial over Fgn

Q(x) = x19" = x . x9’

F4n is an n-dimension vector space over I,

Since x — x9 is linear, @ is quadratic

Requires that ged(1+ g%, q" — 1) =1

Q is inverted by raising to the inverse power of 1 + g

vV vy VvYyy
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HFE: Hidden Field Equations

@ Generalization of C*

@ The central map is a polynomial over IF

Q(x) = Z a,-J-xqi+qi + Z b,'xqi +c

gi+q/<D gi<D

» Inversion is much slower than C*
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l-invertible Cycles

o Like C*, /IC also uses an intermediate field L* = KX

e Extends C* by using the following central map from (IL*) to itself

QZ(Xl,...,Xg) — (Yl,..., Yg)
= (XiXa, XoXz, ..., Xe—1Xe, XeX{ )
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l-invertible Cycles, ¢ = 3

e “Standard 3IC," £ =3, a=0

o Inversion in (IL*)3 is easy

Q: (X1, X2,X3) € (L*)® —
(X1 X2, X2 X3, X3X1)
Q7 l: (Y, Y, Y3) e (L)

(VY1Y3/Y2,\/Y1Y2/ Y3,1/ Y2 Y3/ Y1,)

@ Can apply the idea of “intermediate fields” to HFE as well

» 3HFE, 4HFE, ...
» Generally faster than HFE
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MPKC Modifiers

@ All vanilla MPKCs have been broken
@ Need modifiers to address attacks

» Minus (-): throw away some polynomials
» Prefix or postfix (p): force some w; =0

@ A few others; not used in our implementation
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Are MPKCs Still Fast?

@ Progress in integer arithmetic

In 80's, CPUs computed one 32-bit integer product every 15-20 cycles
In 2000, x86 CPUs computed one 64-bit product every 3-10 cycles
AMD Opteron today produces one 128-bit product every 2 cycles
Good for ECC!

@ In contrast, progress in [Faq arithmetic is slow

» 6502 or 8051: a dozen cycles via three table look-ups
» Modern x86: roughly same number of cycles

v

v vy

@ Moore's law favors computation, not so much memories
» Memory access speed increased at a snail’s pace
@ Wang et al. made life even harder for MPKCs

» Forcing longer message digests
» Slower MPKCs but RSA untouched
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Questions We Want to Answer

@ Can all the extras on modern commodity CPUs be put to use with
MPKCs as well?

@ If so, how do MPKCs compare to traditional PKCs today, and how is
that likely going to change for the future?
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*SSE*,

the X86 Vector Instruction Set Extensions

@ SSE: Streaming SIMD Extensions

>

SIMD: Single Instruction Multiple Data

@ Most useful: SSE2 integer instructions

>

vV VY VY VY VY

Work on 16 xmm 128-bit registers

As packed 8-, 16-, 32- or 64-bit operands

Move xmm to/from xmm, memory (even unaligned), x86 registers
Shuffle data and pack/unpack on vector data

Bit-wise logical operations like AND, OR, NOT, XOR

Shift left, right logical /arithmetic by units, or entire xmm byte-wise
Add/subtract on 8-, 16-, 32- and 64-bits

Multiply 16-bit and 32-bits in various ways

@ SSSE3's PSHUFB also useful
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PSHUFB in SSSE3

@ Packed Shuffle Bytes

> Source: (xo,...,X15)
» Destination: (yo,...,Y1s)
> Result: (¥x mod 32, - - - » Yxus mod 32), treating xie, ..., x31 as 0
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Speeding Up MPKCs over [y

TT :16 x 16 table, with TT;; =ix/,0<1/,j <16

To compute av, a € Fig,v € (F16)'°

» xmm < a-th row of TT

» av «— PSHUFB xmm,v
e Works similarly for a € (F16)?,v € (F16)%?
» Need to unpack, do PSHUFBs, then pack

@ Delivers 2x performance over simple bit slicing in private map
evaluation of rainbow and TTS

Some other platforms also have similar instructions

» AMD's SSE5: PPERM (superset of PSHUFB)
» IBM POWER AltiVec/VMX: PERMU

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7

17 / 29



Speeding Up MPKCs over 56

o TL:256 x 16 table, with TL;j = i%j,0< i <256, 0<j< 16

o TH:256 x 16 table, with TH;j = i x (16/),0 < i < 256, 0 < j < 16

o To compute av, a € Fosg,v € (F256)1°

> av; = a(16|v;/16]) + a(v; mod 16),0 </ < 16
v, — a(16|v;/16])
> vl |v;/16] (SHIFT)
» xmm < a-th row of TH
» v/ «— PSHUFB xmm,v’
@ v; «— a(v; mod 16)
» v; < v; mod 16 (AND)
> xmm < a-th row of TL
» v «— PSHUFB xmm,v

av—v+Vv (OR)
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Evaluating Public Maps

@ Normally we do z, = Zi Wi [P,'k + Quew; + Zi<j R,JkW_,

@ However, the memory access pattern is not good here

o Instead, it is faster if we do
> e wh (wiwy)igg]
» z — Pc, where P is the m x n(n+ 3)/2 public-key matrix
» Due to Faugere and Gilbert
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MPKCs over Odd Prime Fields

@ Good for defending against Grobner basis attacks

@ The field equation X9 — X = 0 becomes much less useful
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Basic Building Blocks for Speeding Up Odd MPKCs

o IMULHIb: the upper half in a signed product of two b-bit words
o Useful for computing |xy/2°|

» For 20"t < x <2b-1 —(g—1)/2

» t < IMULHIb [28/q],x + (g — 1)/2]

>y« x —qt computes y = x mod q, |y| < g
@ For g =31 and b = 16, we can do even better

» For —32768 < x < 32752
» t « IMULHI16 2114, x + 15
» y« x — 31t computes y = x mod 31, -16 < y <15
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Remarks on Getting More Performance

@ Laziness often leads to optimality

» Do not always need the tightest range

> The less reductions, the better!

» Packing IF,-blocks into binary can use more bits than necessary
» As long as the map is injective and convenient to compute

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 22 /29



Speeding Up Polynomial Evaluation

o PMADDWD: Packed Multiply and Add, Word to Double-word
> Source: (xp,...,x7)
> Destination: (v, ..., y7)
> Result: (xoyo + X1y1, Xoy2 + X3Y3, XaYa + Xs¥5, X6 Y6 + X7Y7)
@ Helpful in evaluating z = Pc, piece by piece
> Let Q be a 4 x 2 submatrix of P
d” be the corresponding 2 x 1 submatrix of ¢

rl «— (@1, Qu2, Qo1, @22, R31, Q32, Qa1, Qu2)
r2 « (dl, d27 dla d27 dla d2, d17 d2)
PMADDWD r1, r2 computes Qd

Continue in 32-bits until reduction modgq

vV vy vy VvYyy

@ Saves a few modq operations and delivers 1.5x performance
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Inversion in sy

o Normally do table look-ups

o Alternative: x — x?9

> y« x*x*xmod3l (y =x3)
» y«—x*y*ymod3l (y =x")
» y« y*xymod3l (y = x'4)

» y— x*y*ymod3l (y = x*)

@ Deliver 2x performance over table look-ups!
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Wiedemann vs. Gauss Elimination

@ How to solve a medium-sized dense linear system?
» Wiedemann iterative solver for Ax = b

* Compute zA'b for some z
* Compute minimal polynomial using Berlekamp-Massey

» Requires O(2n3) field multiplications
» Straightforward Gauss elimination requires O(n3/3)

@ However, Wiedemann involves much less reductions modulo g

@ Result: Wiedemann beats Gauss by a factor of 2!
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Special Tower Fields

o I« isomorphic to Fy [t]/p(t), deg p = k and p irreducible

e For k|(g — 1) and a few other cases, p(t) = tk — a for a small a
Deliver 2x reduction performance over cases where p has 3 terms
X +— X9 becomes very easy to compute

Multiplication and division are also very easy

Inversion: (again) raising to the (g* — 2)-th power!

v

v vy

@ Square roots computed via Tonelli-Shanks

@ Univariate equations solved via Cantor-Zassenhaus
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Performance Comparison on Intel Q9550

[ Scheme [[ Result [ PubKey | PriKey [[ KeyGen [ PubMap [ PriMap ||
RSA (1024 bits) 128 B 128 B 1024 B 27.2 ms 26.9 us | 806.1 us
4HFE-p (31,10) 68B | 23KB | SKB 4ims | 68 pus | 659.7 us
3HFE-p (31,9) 678 | 7KB | 5KB 08ms | 23 us | 605 s
RSA (1024 bits) 128B | 128B | 1024B || 264 ms | 224 us | 813.5 us
ECDSA (160 bits) 208 208 60 B 03 ms | 4002 us | 357.8 s
C*-p (pFLASH) 37 B 72 KB 5 KB 28.7 ms 97.9 us | 473.6 us
3IC-p (31,18,1) 36B | 35KB | 12KB 42ms | 117 ps | 256.2 s
Rainbow (31,24,20,20) 43 B 57 KB | 150 KB 120.4 ms 17.7 us 70.6 us
TTS (31,24,20,20) 43B | 57KB | 16KB || 13.7ms | 184pus | 142 s

Measured using SUPERCOP: System for unified performance evaluation
related to cryptographic operations and primitives.
http://bench.cr.yp.to/supercop.html, April 2009.
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Concluding Remarks

@ Take-away point: Odd MPKCs worth studying!
» Algebraic attacks become harder
» Friendly to mainstream computing devices

* X86 CPUs have vector instructions
* High-end FPGAs have multiplier IPs
* Also good for many-core GPUs (NVIDIA, ATI/AMD, Larrabee)
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Thanks for Listening!

@ Questions or comments?
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