SSE Implementation of
Multivariate PKCs on
Modern X86 CPUs

Chen-Mou Cheng

Department of Electrical Engineering
National Taiwan University
Taipei, Taiwan
ccheng@cc.ee.ntu.edu.tw

5/
g
§
xS

September 7, 2009

Authors

@ This is a joint work with

» Jintai Ding, University of Cincinnati, USA
» Bo-Yin Yang, Academia Sinica, Taiwan
» Students

* Anna Inn-Tung Chen, University of Michigan, USA

* Ming-Shing Chen, National Taiwan University, Taiwan
* Tien-Ren Chen, National Immigration Agency, Taiwan
* Eric Li-Hsiang Kuo, Academia Sinica, Taiwan
* Frost Yu-Shuang Lee, University of Michigan, USA
C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7

2/29

Outline

Multivariate PKCs

SSE, the x86 vector instruction set extensions
Using SSSE3 to speed up binary MPKCs
MPKCs over odd prime fields

Using SSE2 to speed up odd MPKCs

Some counter-intuitive (but fast!) techniques

Performance results

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 3/29

Multivariate PKCs

P:weK”iix:Msw—chi%erz:MTy—FcTEK’"

@ Public map of a typical multivariate PKC over base field K = IF,

S and T affine and invertible

Q quadratic, known as as the central map
For encryption schemes, n < m

For signature schemes, n > m

v vy VvYy

@ Future-proof against quantum computers

@ Fast because MPKCs replace arithmetic operations on large units by

faster operations on many small units

C.-M. Cheng (NTU) SSE Implementation of MPKCs

September 7

4/ 29

Unbalanced Oil and Vinegar

of! of, ol - af)
e |00 ol Loy o)
O 0 0
Othrl,l av+1,v
i an';)l af,i,v 0 0 |

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 5/29

Rainbow-like Signatures

Stage-wise UOV

e For0<wvi<w<---<vyp1=n
> 5/22{1,2,...,V/}

» O = {V/+1,...,V/+1}

> 0y = V/+1—V/=|O/|

@ Q:x=(x1,..., %) = Y= Vvy41s---,¥n)
> Yk = qk(x), with following form if v, < k < vj41
k K k
D DR R SR TR o
i<j<v iI<vi<j<vizi i<vig1
@ Given all y; with v; </ < vj4; and all x; with j < v, we can compute

Xy/41,- -5 Xy, Via elimination

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 6 /29

TTS: Rainbow with Sparse Middle

@ Has a sparse Q

e Q7! needs solving just linear equations, like in Rainbow
e Example from 2004: TTS(20,28)

7 .
Yi = Xi+ i1 PijXjXey(i+jmod9): i =8,...,16
Yir = X117 + P17,1X1X6 + P17,2X2X5 + P17,3X3Xa
+Pp17,4X9X16 + P17,5X10X15 + P17,6X11X14 + P17,7X12X13
Y18 = X18 + p18,1XeX7 + P18,2X3X6 + P18,3X4Xs5
+P18,4X10X17 + P18,5X11X16 1+ P18,6X12X15 1 P18,7X13X14
i
Yi = Xi+ Pi0Xi—11Xi—9 + X i_19 Pi,j—18X2(i—j)— (i mod 2)Xj

27 :
+ D itit1 Pij—18Xi—jt10Xj, 1 = 19,...,27

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 7 /29

The C* Scheme

@ Proposed by Matsumoto and Imai in 1988
@ Broken by Patarin in 1995

@ The central map is a monomial over Fgn

Q(x) = x19" = x . x9’

F4n is an n-dimension vector space over I,

Since x — x9 is linear, @ is quadratic

Requires that ged(1+ g%, q" — 1) =1

Q is inverted by raising to the inverse power of 1 + g

vV vy VvYyy

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7

8 /29

HFE: Hidden Field Equations

@ Generalization of C*

@ The central map is a polynomial over IF

Q(x) = Z a,-J-xqi+qi + Z b,'xqi +c

gi+q/<D gi<D

» Inversion is much slower than C*

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7

9/29

l-invertible Cycles

o Like C*, /IC also uses an intermediate field L* = KX

e Extends C* by using the following central map from (IL*) to itself

QZ(Xl,...,Xg) — (Yl,..., Yg)
= (XiXa, XoXz, ..., Xe—1Xe, XeX{)

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 10 / 29

l-invertible Cycles, ¢ = 3

e “Standard 3IC," £ =3, a=0

o Inversion in (IL*)3 is easy

Q: (X1, X2,X3) € (L*)® —
(X1 X2, X2 X3, X3X1)
Q7 l: (Y, Y, Y3) e (L)

(VY1Y3/Y2,\/Y1Y2/ Y3,1/ Y2 Y3/ Y1,)

@ Can apply the idea of “intermediate fields” to HFE as well

» 3HFE, 4HFE, ...
» Generally faster than HFE

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7

11 /29

MPKC Modifiers

@ All vanilla MPKCs have been broken
@ Need modifiers to address attacks

» Minus (-): throw away some polynomials
» Prefix or postfix (p): force some w; =0

@ A few others; not used in our implementation

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 12 /29

Are MPKCs Still Fast?

@ Progress in integer arithmetic

In 80's, CPUs computed one 32-bit integer product every 15-20 cycles
In 2000, x86 CPUs computed one 64-bit product every 3-10 cycles
AMD Opteron today produces one 128-bit product every 2 cycles
Good for ECC!

@ In contrast, progress in [Faq arithmetic is slow

» 6502 or 8051: a dozen cycles via three table look-ups
» Modern x86: roughly same number of cycles

v

v vy

@ Moore's law favors computation, not so much memories
» Memory access speed increased at a snail’s pace
@ Wang et al. made life even harder for MPKCs

» Forcing longer message digests
» Slower MPKCs but RSA untouched

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 13 /29

Questions We Want to Answer

@ Can all the extras on modern commodity CPUs be put to use with
MPKCs as well?

@ If so, how do MPKCs compare to traditional PKCs today, and how is
that likely going to change for the future?

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 14 /29

SSE,

the X86 Vector Instruction Set Extensions

@ SSE: Streaming SIMD Extensions

>

SIMD: Single Instruction Multiple Data

@ Most useful: SSE2 integer instructions

>

vV VY VY VY VY

Work on 16 xmm 128-bit registers

As packed 8-, 16-, 32- or 64-bit operands

Move xmm to/from xmm, memory (even unaligned), x86 registers
Shuffle data and pack/unpack on vector data

Bit-wise logical operations like AND, OR, NOT, XOR

Shift left, right logical /arithmetic by units, or entire xmm byte-wise
Add/subtract on 8-, 16-, 32- and 64-bits

Multiply 16-bit and 32-bits in various ways

@ SSSE3's PSHUFB also useful

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7

15 / 29

PSHUFB in SSSE3

@ Packed Shuffle Bytes

> Source: (xo,...,X15)
» Destination: (yo,...,Y1s)
> Result: (¥x mod 32, - - - » Yxus mod 32), treating xie, ..., x31 as 0

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 16 / 29

Speeding Up MPKCs over [y

TT :16 x 16 table, with TT;; =ix/,0<1/,j <16

To compute av, a € Fig,v € (F16)'°

» xmm < a-th row of TT

» av «— PSHUFB xmm,v
e Works similarly for a € (F16)?,v € (F16)%?
» Need to unpack, do PSHUFBs, then pack

@ Delivers 2x performance over simple bit slicing in private map
evaluation of rainbow and TTS

Some other platforms also have similar instructions

» AMD's SSE5: PPERM (superset of PSHUFB)
» IBM POWER AltiVec/VMX: PERMU

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7

17 / 29

Speeding Up MPKCs over 56

o TL:256 x 16 table, with TL;j = i%j,0< i <256, 0<j< 16

o TH:256 x 16 table, with TH;j = i x (16/),0 < i < 256, 0 < j < 16

o To compute av, a € Fosg,v € (F256)1°

> av; = a(16|v;/16]) + a(v; mod 16),0 </ < 16
v, — a(16|v;/16])
> vl |v;/16] (SHIFT)
» xmm < a-th row of TH
» v/ «— PSHUFB xmm,v’
@ v; «— a(v; mod 16)
» v; < v; mod 16 (AND)
> xmm < a-th row of TL
» v «— PSHUFB xmm,v

av—v+Vv (OR)

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 18 /29

Evaluating Public Maps

@ Normally we do z, = Zi Wi [P,'k + Quew; + Zi<j R,JkW_,

@ However, the memory access pattern is not good here

o Instead, it is faster if we do
> e wh (wiwy)igg]
» z — Pc, where P is the m x n(n+ 3)/2 public-key matrix
» Due to Faugere and Gilbert

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 19 /29

MPKCs over Odd Prime Fields

@ Good for defending against Grobner basis attacks

@ The field equation X9 — X = 0 becomes much less useful

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 20 /29

Basic Building Blocks for Speeding Up Odd MPKCs

o IMULHIb: the upper half in a signed product of two b-bit words
o Useful for computing |xy/2°|

» For 20"t < x <2b-1 —(g—1)/2

» t < IMULHIb [28/q],x + (g — 1)/2]

>y« x —qt computes y = x mod q, |y| < g
@ For g =31 and b = 16, we can do even better

» For —32768 < x < 32752
» t « IMULHI16 2114, x + 15
» y« x — 31t computes y = x mod 31, -16 < y <15

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 21 /29

Remarks on Getting More Performance

@ Laziness often leads to optimality

» Do not always need the tightest range

> The less reductions, the better!

» Packing IF,-blocks into binary can use more bits than necessary
» As long as the map is injective and convenient to compute

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 22 /29

Speeding Up Polynomial Evaluation

o PMADDWD: Packed Multiply and Add, Word to Double-word
> Source: (xp,...,x7)
> Destination: (v, ..., y7)
> Result: (xoyo + X1y1, Xoy2 + X3Y3, XaYa + Xs¥5, X6 Y6 + X7Y7)
@ Helpful in evaluating z = Pc, piece by piece
> Let Q be a 4 x 2 submatrix of P
d” be the corresponding 2 x 1 submatrix of ¢

rl «— (@1, Qu2, Qo1, @22, R31, Q32, Qa1, Qu2)
r2 « (dl, d27 dla d27 dla d2, d17 d2)
PMADDWD r1, r2 computes Qd

Continue in 32-bits until reduction modgq

vV vy vy VvYyy

@ Saves a few modq operations and delivers 1.5x performance

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7

23 /29

Inversion in sy

o Normally do table look-ups

o Alternative: x — x?9

> y« x*x*xmod3l (y =x3)
» y«—x*y*ymod3l (y =x")
» y« y*xymod3l (y = x'4)

» y— x*y*ymod3l (y = x*)

@ Deliver 2x performance over table look-ups!

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7

24 /29

Wiedemann vs. Gauss Elimination

@ How to solve a medium-sized dense linear system?
» Wiedemann iterative solver for Ax = b

* Compute zA'b for some z
* Compute minimal polynomial using Berlekamp-Massey

» Requires O(2n3) field multiplications
» Straightforward Gauss elimination requires O(n3/3)

@ However, Wiedemann involves much less reductions modulo g

@ Result: Wiedemann beats Gauss by a factor of 2!

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 25 /29

Special Tower Fields

o I« isomorphic to Fy [t]/p(t), deg p = k and p irreducible

e For k|(g — 1) and a few other cases, p(t) = tk — a for a small a
Deliver 2x reduction performance over cases where p has 3 terms
X +— X9 becomes very easy to compute

Multiplication and division are also very easy

Inversion: (again) raising to the (g* — 2)-th power!

v

v vy

@ Square roots computed via Tonelli-Shanks

@ Univariate equations solved via Cantor-Zassenhaus

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 26 / 29

Performance Comparison on Intel Q9550

[Scheme [[Result [PubKey | PriKey [[KeyGen [PubMap [PriMap ||
RSA (1024 bits) 128 B 128 B 1024 B 27.2 ms 26.9 us | 806.1 us
4HFE-p (31,10) 68B | 23KB | SKB 4ims | 68 pus | 659.7 us
3HFE-p (31,9) 678 | 7KB | 5KB 08ms | 23 us | 605 s
RSA (1024 bits) 128B | 128B | 1024B || 264 ms | 224 us | 813.5 us
ECDSA (160 bits) 208 208 60 B 03 ms | 4002 us | 357.8 s
C*-p (pFLASH) 37 B 72 KB 5 KB 28.7 ms 97.9 us | 473.6 us
3IC-p (31,18,1) 36B | 35KB | 12KB 42ms | 117 ps | 256.2 s
Rainbow (31,24,20,20) 43 B 57 KB | 150 KB 120.4 ms 17.7 us 70.6 us
TTS (31,24,20,20) 43B | 57KB | 16KB || 13.7ms | 184pus | 142 s

Measured using SUPERCOP: System for unified performance evaluation
related to cryptographic operations and primitives.
http://bench.cr.yp.to/supercop.html, April 2009.

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 27 /29

http://bench.cr.yp.to/supercop.html

Concluding Remarks

@ Take-away point: Odd MPKCs worth studying!
» Algebraic attacks become harder
» Friendly to mainstream computing devices

* X86 CPUs have vector instructions
* High-end FPGAs have multiplier IPs
* Also good for many-core GPUs (NVIDIA, ATI/AMD, Larrabee)

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 28 /29

Thanks for Listening!

@ Questions or comments?

C.-M. Cheng (NTU)

SSE Implementation of MPKCs

