
SSE Implementation of
Multivariate PKCs on

Modern X86 CPUs

Chen-Mou Cheng

Department of Electrical Engineering
National Taiwan University

Taipei, Taiwan
ccheng@cc.ee.ntu.edu.tw

September 7, 2009

Authors

This is a joint work with
I Jintai Ding, University of Cincinnati, USA
I Bo-Yin Yang, Academia Sinica, Taiwan
I Students

F Anna Inn-Tung Chen, University of Michigan, USA
F Ming-Shing Chen, National Taiwan University, Taiwan
F Tien-Ren Chen, National Immigration Agency, Taiwan
F Eric Li-Hsiang Kuo, Academia Sinica, Taiwan
F Frost Yu-Shuang Lee, University of Michigan, USA

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 2 / 29

Outline

Multivariate PKCs

SSE, the x86 vector instruction set extensions

Using SSSE3 to speed up binary MPKCs

MPKCs over odd prime fields

Using SSE2 to speed up odd MPKCs

Some counter-intuitive (but fast!) techniques

Performance results

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 3 / 29

Multivariate PKCs

P : w ∈ Kn S7→ x = MSw + cS
Q7→ y

T7→ z = MTy + cT ∈ Km

Public map of a typical multivariate PKC over base field K = Fq

I S and T affine and invertible
I Q quadratic, known as as the central map
I For encryption schemes, n < m
I For signature schemes, n > m

Future-proof against quantum computers

Fast because MPKCs replace arithmetic operations on large units by
faster operations on many small units

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 4 / 29

Unbalanced Oil and Vinegar

Mi :=



α
(i)
11 · · · α

(i)
1,v α

(i)
1,v+1 · · · α

(i)
1,n

...
. . .

...
...

. . .
...

α
(i)
v ,1 · · · α

(i)
v ,v α

(i)
v ,v+1 · · · α

(i)
v ,n

α
(i)
v+1,1 · · · α

(i)
v+1,v 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
n,1 · · · α

(i)
n,v 0 · · · 0



C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 5 / 29

Rainbow-like Signatures

Stage-wise UOV

For 0 < v1 < v2 < · · · < vu+1 = n
I Sl := {1, 2, . . . , vl}
I Ol := {vl + 1, . . . , vl+1}
I ol := vl+1 − vl = |Ol |
Q : x = (x1, . . . , xn) 7→ y = (yv1+1, . . . , yn)

I yk := qk(x), with following form if vl < k ≤ vl+1

qk =
∑

i≤j≤vl

α
(k)
ij xixj +

∑
i≤vl<j<vl+1

α
(k)
ij xixj +

∑
i<vl+1

β
(k)
i xi

Given all yi with vl < i ≤ vl+1 and all xj with j ≤ vl , we can compute
xvl+1, . . . , xvl+1

via elimination

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 6 / 29

TTS: Rainbow with Sparse Middle

Has a sparse Q
Q−1 needs solving just linear equations, like in Rainbow

Example from 2004: TTS(20,28)

yi = xi +
∑7

j=1 pijxjx8+(i+j mod 9), i = 8, . . . , 16

y17 = x17 + p17,1x1x6 + p17,2x2x5 + p17,3x3x4
+p17,4x9x16 + p17,5x10x15 + p17,6x11x14 + p17,7x12x13

y18 = x18 + p18,1x2x7 + p18,2x3x6 + p18,3x4x5
+p18,4x10x17 + p18,5x11x16 + p18,6x12x15 + p18,7x13x14

yi = xi + pi ,0xi−11xi−9 +
∑i

j=19 pi ,j−18x2(i−j)−(i mod 2)xj

+
∑27

j=i+1 pi ,j−18xi−j+19xj , i = 19, . . . , 27

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 7 / 29

The C ∗ Scheme

Proposed by Matsumoto and Imai in 1988

Broken by Patarin in 1995

The central map is a monomial over Fqn

Q(x) = x1+qθ
= x · xqθ

I Fqn is an n-dimension vector space over Fq

I Since x 7→ xq is linear, Q is quadratic
I Requires that gcd(1 + qθ, qn − 1) = 1
I Q is inverted by raising to the inverse power of 1 + qθ

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 8 / 29

HFE: Hidden Field Equations

Generalization of C ∗

The central map is a polynomial over Fqn

Q(x) =
∑

qi+qj≤D

aijx
qi+qj

+
∑
qi≤D

bix
qi

+ c

I Inversion is much slower than C∗

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 9 / 29

`-invertible Cycles

Like C ∗, `IC also uses an intermediate field L∗ = Kk

Extends C ∗ by using the following central map from (L∗)` to itself

Q : (X1, . . . ,X`) 7→ (Y1, . . . , Y`)

:= (X1X2, X2X3, . . . , X`−1X`,X`X
qα

1)

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 10 / 29

`-invertible Cycles, ` = 3

“Standard 3IC,” ` = 3, α = 0

Inversion in (L∗)3 is easy

Q : (X1,X2,X3) ∈ (L∗)3 7→
(X1X2,X2X3,X3X1)

Q−1 : (Y1,Y2,Y3) ∈ (L∗)3 7→
(
√

Y1Y3/Y2,
√

Y1Y2/Y3,
√

Y2Y3/Y1,)

Can apply the idea of “intermediate fields” to HFE as well
I 3HFE, 4HFE, . . .
I Generally faster than HFE

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 11 / 29

MPKC Modifiers

All vanilla MPKCs have been broken

Need modifiers to address attacks
I Minus (-): throw away some polynomials
I Prefix or postfix (p): force some wi = 0

A few others; not used in our implementation

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 12 / 29

Are MPKCs Still Fast?

Progress in integer arithmetic
I In 80’s, CPUs computed one 32-bit integer product every 15–20 cycles
I In 2000, x86 CPUs computed one 64-bit product every 3–10 cycles
I AMD Opteron today produces one 128-bit product every 2 cycles
I Good for ECC!

In contrast, progress in F2q arithmetic is slow
I 6502 or 8051: a dozen cycles via three table look-ups
I Modern x86: roughly same number of cycles

Moore’s law favors computation, not so much memories
I Memory access speed increased at a snail’s pace

Wang et al. made life even harder for MPKCs
I Forcing longer message digests
I Slower MPKCs but RSA untouched

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 13 / 29

Questions We Want to Answer

Can all the extras on modern commodity CPUs be put to use with
MPKCs as well?

If so, how do MPKCs compare to traditional PKCs today, and how is
that likely going to change for the future?

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 14 / 29

SSE, the X86 Vector Instruction Set Extensions

SSE: Streaming SIMD Extensions
I SIMD: Single Instruction Multiple Data

Most useful: SSE2 integer instructions
I Work on 16 xmm 128-bit registers
I As packed 8-, 16-, 32- or 64-bit operands
I Move xmm to/from xmm, memory (even unaligned), x86 registers
I Shuffle data and pack/unpack on vector data
I Bit-wise logical operations like AND, OR, NOT, XOR
I Shift left, right logical/arithmetic by units, or entire xmm byte-wise
I Add/subtract on 8-, 16-, 32- and 64-bits
I Multiply 16-bit and 32-bits in various ways

SSSE3’s PSHUFB also useful

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 15 / 29

PSHUFB in SSSE3

Packed Shuffle Bytes
I Source: (x0, . . . , x15)
I Destination: (y0, . . . , y15)
I Result: (yx0 mod 32, . . . , yx15 mod 32), treating x16, . . . , x31 as 0

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 16 / 29

Speeding Up MPKCs over F16

TT : 16× 16 table, with TTi ,j = i ∗ j , 0 ≤ i , j < 16

To compute av, a ∈ F16, v ∈ (F16)16

I xmm ← a-th row of TT
I av← PSHUFB xmm,v

Works similarly for a ∈ (F16)2, v ∈ (F16)32

I Need to unpack, do PSHUFBs, then pack

Delivers 2× performance over simple bit slicing in private map
evaluation of rainbow and TTS

Some other platforms also have similar instructions
I AMD’s SSE5: PPERM (superset of PSHUFB)
I IBM POWER AltiVec/VMX: PERMU

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 17 / 29

Speeding Up MPKCs over F256

TL : 256× 16 table, with TLi ,j = i ∗ j , 0 ≤ i < 256, 0 ≤ j < 16

TH : 256× 16 table, with THi ,j = i ∗ (16j), 0 ≤ i < 256, 0 ≤ j < 16

To compute av, a ∈ F256, v ∈ (F256)16

I avi = a(16bvi/16c) + a(vi mod 16), 0 ≤ i < 16

v′i ← a(16bvi/16c)
I v′i ← bvi/16c (SHIFT)
I xmm ← a-th row of TH
I v′ ← PSHUFB xmm,v′

vi ← a(vi mod 16)
I vi ← vi mod 16 (AND)
I xmm ← a-th row of TL
I v← PSHUFB xmm,v

av← v + v′ (OR)

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 18 / 29

Evaluating Public Maps

Normally we do zk =
∑

i wi

[
Pik + Qikwi +

∑
i<j Rijkwj

]
However, the memory access pattern is not good here

Instead, it is faster if we do
I c← [wT , (wiwj)i≤j]

T

I z← Pc, where P is the m × n(n + 3)/2 public-key matrix
I Due to Faugère and Gilbert

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 19 / 29

MPKCs over Odd Prime Fields

Good for defending against Gröbner basis attacks

The field equation X q − X = 0 becomes much less useful

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 20 / 29

Basic Building Blocks for Speeding Up Odd MPKCs

IMULHIb: the upper half in a signed product of two b-bit words

Useful for computing bxy/2bc
I For −2b−1 ≤ x ≤ 2b−1 − (q − 1)/2
I t ← IMULHIb b2b/qc, x + b(q − 1)/2c
I y ← x − qt computes y = x mod q, |y | ≤ q

For q = 31 and b = 16, we can do even better
I For −32768 ≤ x ≤ 32752
I t ← IMULHI16 2114, x + 15
I y ← x − 31t computes y = x mod 31,−16 ≤ y ≤ 15

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 21 / 29

Remarks on Getting More Performance

Laziness often leads to optimality
I Do not always need the tightest range
I The less reductions, the better!
I Packing Fq-blocks into binary can use more bits than necessary
I As long as the map is injective and convenient to compute

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 22 / 29

Speeding Up Polynomial Evaluation

PMADDWD: Packed Multiply and Add, Word to Double-word
I Source: (x0, . . . , x7)
I Destination: (y0, . . . , y7)
I Result: (x0y0 + x1y1, x2y2 + x3y3, x4y4 + x5y5, x6y6 + x7y7)

Helpful in evaluating z = Pc, piece by piece
I Let Q be a 4× 2 submatrix of P
I dT be the corresponding 2× 1 submatrix of c
I r1 ← (Q11,Q12,Q21,Q22,Q31,Q32,Q41,Q42)
I r2 ← (d1, d2, d1, d2, d1, d2, d1, d2)
I PMADDWD r1, r2 computes Qd
I Continue in 32-bits until reduction modq

Saves a few modq operations and delivers 1.5× performance

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 23 / 29

Inversion in F31

Normally do table look-ups

Alternative: x 7→ x29

I y ← x ∗ x ∗ x mod 31 (y = x3)
I y ← x ∗ y ∗ y mod 31 (y = x7)
I y ← y ∗ y mod 31 (y = x14)
I y ← x ∗ y ∗ y mod 31 (y = x29)

Deliver 2× performance over table look-ups!

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 24 / 29

Wiedemann vs. Gauss Elimination

How to solve a medium-sized dense linear system?
I Wiedemann iterative solver for Ax = b

F Compute zAib for some z
F Compute minimal polynomial using Berlekamp-Massey

I Requires O(2n3) field multiplications
I Straightforward Gauss elimination requires O(n3/3)

However, Wiedemann involves much less reductions modulo q

Result: Wiedemann beats Gauss by a factor of 2!

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 25 / 29

Special Tower Fields

Fqk isomorphic to Fq [t]/p(t), deg p = k and p irreducible

For k|(q − 1) and a few other cases, p(t) = tk − a for a small a
I Deliver 2× reduction performance over cases where p has 3 terms
I X 7→ X q becomes very easy to compute
I Multiplication and division are also very easy
I Inversion: (again) raising to the (qk − 2)-th power!

Square roots computed via Tonelli-Shanks

Univariate equations solved via Cantor-Zassenhaus

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 26 / 29

Performance Comparison on Intel Q9550

Scheme Result PubKey PriKey KeyGen PubMap PriMap

RSA (1024 bits) 128 B 128 B 1024 B 27.2 ms 26.9 µs 806.1 µs
4HFE-p (31,10) 68 B 23 KB 8 KB 4.1 ms 6.8 µs 659.7 µs
3HFE-p (31,9) 67 B 7 KB 5 KB 0.8 ms 2.3 µs 60.5 µs

RSA (1024 bits) 128 B 128 B 1024 B 26.4 ms 22.4 µs 813.5 µs
ECDSA (160 bits) 40 B 40 B 60 B 0.3 ms 409.2 µs 357.8 µs
C∗-p (pFLASH) 37 B 72 KB 5 KB 28.7 ms 97.9 µs 473.6 µs
3IC-p (31,18,1) 36 B 35 KB 12 KB 4.2 ms 11.7 µs 256.2 µs
Rainbow (31,24,20,20) 43 B 57 KB 150 KB 120.4 ms 17.7 µs 70.6 µs
TTS (31,24,20,20) 43 B 57 KB 16 KB 13.7 ms 18.4 µs 14.2 µs

Measured using SUPERCOP: System for unified performance evaluation
related to cryptographic operations and primitives.
http://bench.cr.yp.to/supercop.html, April 2009.

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 27 / 29

http://bench.cr.yp.to/supercop.html

Concluding Remarks

Take-away point: Odd MPKCs worth studying!
I Algebraic attacks become harder
I Friendly to mainstream computing devices

F X86 CPUs have vector instructions
F High-end FPGAs have multiplier IPs
F Also good for many-core GPUs (NVIDIA, ATI/AMD, Larrabee)

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 28 / 29

Thanks for Listening!

Questions or comments?

C.-M. Cheng (NTU) SSE Implementation of MPKCs September 7 29 / 29

