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Research Background

* Reducing SW Dev Overhead on Highly Parallel

Heterogeneous Compute Resources

— Example Architectures
* CPU + GPU (GPGPU)
* CPU + Cell, or Cell alone.
* FPGA (PCle Boards / Opteron Socket)
* Intel TeraScale
* AMD Fusion

* Focal Applications for research:
- AES
— Biotech - docking.



CPU vs GPU
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* Reasons For Highly
Parallel Approach:

Reduced returns from
pipeline deepening.
Power/heat
considerations with
iIncreased clock speeds.
Difficultly in ILP.
Highly parallel design
moves these problems
to the developer.
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— Highly parallel design
moves these problems
to the developer.

— Heterogeneous = better transistor
expenditure for tasks.



GPU & AES Motivation

CPU and GPU model converging into some form of
heterogeneous architecture. Good to research on likely
future compute resources.

GPU normally highly underutilised, co-processor.
Investigate if cheaper per byte enc/dec for
encryption/streaming farms.

Reduced trusted computing base for encrypted visual
applications.

Personal reasons — good example parallelisable
unexplored application for main research focal point.



GPU Programming Interface

* OpenGL. Advantages: only cross OS, cross
graphics card vendors, cross gpu generations,
vendor support. Disadvantages: api requires
graphical knowledge.

* APl used in presented work, though CUDA and
CTM are aiming to make GPU programming more
mainstream.



OpenGL Pipeline
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GPGPU basic idea is to create a 2D quadrilateral and an equivalently
sized 2D texture which acts as the input data. The output data

1s written to the active framebuffer after computation by the
fragment processors.



DX9 GPUs and AES

Data Throughput — PCle, transfer tool.

Texture Lookups (memory footprint minimisation) — ie.
restricted and non uniform memory layout.

Gather and Scatter.

XOR operator - ROP only - restrictive.

-ree Swizzle (useful for free ROTSs).

Parallel Modes of Operation only.

~loating point only fragment processor.
OpenGL/DirectX graphics APl only.




DX9 Cards - XOR

8 bit simulated using table lookups.

4 bit table lookups with wrapping + multiplies.

ROP xor with render pass per xor.
Results in MBytes/s.

(zeloree 6600G T

(zel'orce

=

(900G T

CPU

8- bit

4-bit

Native

R-bit |-

Native

8-bit

32-bit

W /0O Round Trip

[81.26

1068.0

4160

672.0 |35

12249

With Round Trip

79.61

126.7

[41.0

J34.83 [

475.4

[18.29

437.18




DX9 AES

* Input: Each column represented as an RGBA 4 8 bit
component texel. Output: 4 texture (MRT - lack of scatter)

* 3 Gather techniques:
— Multi Texture Input, Single Texture H & S gather.

2) W b) c)

* noROT vs ROT (5 table vs 2 table + rots).
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I DX9 AES

approaches, noROT, ROT.
* AES approach 2: 4 bit simulated xor, same as
approach 1.

* AES approach 3: ROP xor. Multi input gather only(no

scatter/multi passes per round thus output and input
textures as same type). Memory read footprint reduction:
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I * AES Approach 1: 8 bit simulated xor, 3 gathers
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DX9 AES Results

* Results of AES implementations in Mbytes/s

(Gather Gel'orce 6600GT | GelForce T900GT
lechnique 8-bit |4-bit [Native|8-bit [4-bit |[Native
Multi Tnput ROT | 6.24 [11.47 -'1-:”:.1.-:”: 25.86139.23 [108.86

noROT|6.11 [11.19] 44.89 [25.71]39.01 |[108.55
Single Input| ROT [6.22 [11.40] N/A [26.06[39.18] N/A

Sgather noROT|6.11(11.22) N/A |25.92139.12] N/A
single Input{ ROT [6.20 (11411 N/A [25.9939.16[ N/A

Hgather [noROT|6.15[11.30[ N/A |25.69(39.08] N/A

* ROP base XOR proves best performance even
though the extra passes overnead. Main
bottleneck is non coherent memory access.

* ROT (single table) is slightly better than noROT.



I Throughput

* Different work unit sizes and its effect on
I throughput.
* Small work units = high CPU-GPU
interactions = higher inefficiencies. Lack of
O pipelining doesn't help (future gpus).
* Highly parallel systems naturally need
enough data to keep processing elements
busy.



... Throughput

Effects of packet size variation on encryption.
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Co-processor

* Linux reports 100% CPU usage during
encryption runs. Co-processor?

* Not a true reflection. % CPU Idle Time for
GPU enc shown below:

Gather Gelorce 6600GT GelForce T900GT
Technique 8-bit | 4-bit |Native | 8&bit | 4-bit |Native
ROT [96.69% [94.19%|86.75% 87.427%:(90.61% |74.84%

Multi Input

J 9 0 0
noROT|95.96% [94.107%[85.987:[88. 79%[89.79%: [7T4.57%
Single Input{ ROT [99.18% (96.75% | N/A [88.06%]93.54%
SGather noROT[98.24%[95.32%] N/A [88.65%]92.34%
Single Input| ROT [98.76% [96.59% | N/A [88.707%[93.0:
HGather [noROT]98.56%[96.467%| N/A [88.49%]93.3




Recent DX10 GPUs

Massive improvement on previous models in terms of
GPGPU.

Native XORs support.

Native 32bit Integer support.

Shaders consolidated in hardware = more processors for
general purpose processing.

APl — CUDA, CTI more suited to general purpose
processing.

Throughput and memory footprint still an issue.

Still only suits applications with high compute intensity vs |0,
stream like 10 patterns.



Latest GPU Architecture Example
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Acset of SIMD multiprocessors with on-chip shared memory.

- Nvidia G80 — AES @ > 4Gbps.

- Array of SIMD Processors.

- ~100GB/s Device Memory
Bandwidth.

- Peak ~350GFlops.

- Intel QC - S0GFlops.

- IBM Cell - 250GFlops.

- AMD R600 — 450GFlops.

- G92 — 1TeraFlop.

- CPU and GPU are moving
towards each other.

- Fusion/Terascale.



I * Many thanks.

El Final...



