PHILIPS

FPGA Intrinsic PUFs and Their Use in IP Protection

Jorge Guajardo*, Sandeep S. Kumar*, Geert-Jan Schrijen**, and Pim Tuyls**

* Philips Research Europe, Eindhoven, The Netherlands
** Business Line Intrinsic-ID, Philips Research, Eindhoven, The Netherlands

September 11th, 2007
Contents

Relevance

FPGAs

Intrinsic PUFs

Protocols for IP Protection

Conclusions
Intellectual Property Theft

• Annual value of trade in fake goods: $400 Billion
 – Spare parts
 – Clothing
 – Perfumes
 – Medicines
 – Audio & video
 – Software
 – Electronic Designs

10% of all High Tech Products sold are Counterfeit!

• IC designs
• Electronic circuitry
• Configuration data of programmable devices
Is this relevant in the real world?

May 1, 2006

Next Step for Counterfeiters: Faking the Whole Company

By DAVID LAGUE

BEIJING — At first it seemed to be nothing more than a routine case of counterfeiting in a country where faking it has become an industry.

In mid-2004, managers at the Tokyo headquarters of the Japanese electronics giant NEC started receiving reports that pirated keyboards and blank CD and DVD discs bearing the company’s brand were on sale in retail outlets in Beijing and Hong Kong. So like many other manufacturers combating intellectual property thieves in China, the company hired an investigator to track down the pirates.
SRAM based FPGA: configuration
Available Solutions

Option 1
• Encrypted IP configuration file
• External battery to store Key

Option 2
• Use flash based FPGA
• Cannot be updated in the field

Option 3
• Use a PUF
• Need two components:
 – Randomness source
 – Fuzzy extractor
Physical Unclonable Function

- **PUF = Physical Unclonable Function:** Derive strings from a complex physical system that is inherently unclonable
 - Easy to evaluate (by probing the physical system)
 - Inherently tamper resistant
 - Manufacturer not-reproducible
 - PUFs can be used as a source of a large amount of unclonable secret key material

- **Unclonable**
 - Hard to make a physical clone
 - Hard to make a mathematical model that simulates the behavior of the physical structure

- **Practicality Requirements**
 - Easy to challenge the source
 - Cheap and easy integrable on an IC
 - Excellent mechanical and chemical properties
Modern FPGA Floorplan

- M512 Block
- M4K Block
- I/O Channels
- Digital Signal Processing (DSP) Blocks
- MRAM Blocks
- Phase-Locked Loops (PLL)
Examples

IC with Coating PUF

IC with SRAM PUF

IC with Delay PUF

Intrinsic Identifier

Challenge c-bits

Response n-bits

Combinatorial Circuit

On chip demo
S-RAM PUF
Histogram of Inter-class and Intra-class differences
Properties

- Randomness
- Noise

Properties:
- Entropy: 95%
- Secrecy Rate: 76%

Fuzzy Extractor Needed:
- Error Correction
- Randomness Extraction
Contents

- Relevance
- FPGAs
- Intrinsic PUFs
- Protocols for IP Protection
- Conclusions
How do we put everything together?

Notation:
- TTP (Trusted Third Party), SYS (System Integrator), IPP (IP Provider), HWM (Hardware Manufacturer)

Assumptions:
- Semantically secure encryption scheme
- Honest but curious model
- In the symmetric-key setting, possible constructions for encryption+authentication:
 - $\text{Enc}_{K_1}(M) || \text{MAC}_{K_2}(M)$, MAC-then-Encrypt, Encrypt-then-MAC
- PUF and encryption modules assumed to be on the FPGA
- PUF responses are only available inside the FPGA
- Secure and authenticated channels SYS-TTP and TTP-IPP during enrollment and online phase
Protocol for IP Protection on FPGAs

Enrollment Phase

- **HWM**
 - \{\{C1,R1\}, \ldots \{Cn,Rn\}\}

Online Phase

- **SYS**
 - \(ID_{SW} \parallel ID_{HW}\)

- **TTP**
 - \(ID_{SW}\)
 - \(SW\)
 - \(D \leftarrow Enc_{R1}(SW \parallel ID_{SW})\)

Offline Phase

- \(C_1 \parallel C_2 \parallel D \parallel MAC_{R2}(C1 \parallel C2 \parallel D)\)
PUF based Solution

- Intrinsic PUF
- Helper Data dependent on the specific FPGA chip
A Bit of History

• 2002 Gassend et al., Su et al. – IC PUFs (Delay PUF) CCS 2002, ACSAC 2002

• 2002 Kean, Encryption for IP Protection on FPGAs, FPGA 2002

• 2006 Simpson and Schaumont (Protocols for IP Protection based on the usage of PUFs) CHES 2006

• 2006 Tuyls et al. (Coating PUF), CHES 2006

• 2007 Guajardo et al. PK-based protocols for IP Protection based on intrinsic PUFs, FPL 2007

• 2007 This work
Contents

Relevance

FPGAs

Intrinsic PUFs

Protocols for IP Protection

Conclusions
Conclusions

• New PUF intrinsic to the FPGA with good statistical properties and robustness to environmental conditions.

• New protocol(s) for IP protection on FPGAs

• In the future,
 – Other Intrinsic PUFs
 – Complexity of fuzzy extractors
 – Limit the use of FPGA resources.
 – Reliability: Guaranteeing a low failure rate under all kinds of circumstances.