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Assumption:
IC: Black-Box

↓
Crypto guarantees
Security level

Security not guaranteed
by cryptography

Secret Key:  001011101011

Mathematical Attacks
Protocol Attacks

Physical Attacks

Micro Probes
Focused Ion
Beam

Limitations of the Black-Box Model
Limitations of the Black-Box Model
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Brief Overview Physical Attacks
Brief Overview of Physical Attacks

• Invasive Attacks
• Micro Probing
• Focused Ion Beams
• Chemical
• Mechanical
• Etching

• Side Channel Attacks
• Timing Analysis

• Power Analysis

• Electromagnetic Radiation

• Fault Induction (light, X-ray, power glitch)

• Optical Inspection
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Security in a Physical World

1.  Read-Proof Hardware:
Enemy can not read the data stored in it

2. Tamper-Proof Hardware: 
Enemy can not change the data stored in it

3. Self Destruction Capability

Algorithmic Tamper Proof Security can be achieved 
[Gennaro et al]

Big Challenge: Develop theory and practical components for security in 
the presence of physical leakage: No Black-Boxes!

Components

Security in a Physical World
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Goal
Practical Methods

Focus: Read-Proof Hardware
Read-Proof Hardware is hardware where the attacker can 
not read any information on the data stored in it

M EK(M) 0110M EK(M)

Practical Meaning?!

Security in a Physical World

Should be resistant against:
• Invasive Physical Attacks
• Side-Channel Attacks
• Fault Attacks
• Optical Inspection
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Invasive vs Non-Invasive Attacks
Invasive Physical Attacks Non - Invasive Physical Attacks

Definition
An invasive physical attack is an 
attack where the attacker 
physically breaks into the device 
by modifying its structure

Examples:
• Chemical etching
• Drilling a hole
• Focused Ion Beam attack

Definition
An non-invasive physical attack is an 
attack where the attacker physically 
breaks into the device without 
modifying its structure

Examples:
• Optical inspection of the memory
• Side-Channel attacks (Time, EMA, 
DPA, …)

Physical Attacks
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Methods and Requirements

In order to protect keys against physical attacks:

1. Do not store a key in digital form in a device

2. Generate the key only when needed
(extract it from a physical source on the IC)

3. Delete the key

Methods and Requirements
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Components
Two components are needed:

1. Hardware component (Physics)

1. Physical Source

2. Cryptographic component

1. Fuzzy Extractor/Helper data algorithm 

Methods and Requirements
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Hardware Requirements
Security Requirements:

1. Physical Inscrutability (opaqueness)
2. Unclonability

1. Physical Unclonability
2. Mathematical Unclonability

3. Tamper evident: key is destroyed upon damage

Practicality Requirements:

1. Easy to challenge the source
2. Cheap and easy integratable on an IC
3. Excellent mechanical and chemical properties

Methods and Requirements
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Components: Physical Source
Physical Unclonable Function (PUF): 

Inherently unclonable Physical Structure 
(consisting of many random/uncontrollable 
components) satisfying:

• Easy to evaluate: Challenges-Responses
• Responses are unpredictable
• Inherently tamper evident
• Manufacturer not-reproducable
• Extract keys from measurements

Components
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Coating PUF
• An IC is covered with an opaque coating 

containing random particles with high εr
• Array of capacitive sensors in upper metal layer 

detects local coating properties.
• Inhomogeneous coating random capacitive 

properties

• PUF is used as a source of secret random 
information which are derived from the local 
coating capacitances (secure key storage).

(Si) substrate
insulation                                     

Al Al

coating

passivation
M 1
M 2

M 3

M 4
M 5

tra n sis to rs

p a ss iva tion

C o a tin g -P U F

O n  ch ip  d e m o

Components
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Information Content of a Coating PUF 
(Response)

Coating PUF [JAP06]

Components

≈ 6.6 bits/sensor

1 2 3 4

5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20

21 22 23 24
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Capacitance values of 21 ICs
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Fuzzy Extractor/Helper Data Algorithm

• Information present in the PUF has to be extracted

• Measurements (Challenges - Responses)

• Measurements on Physical Systems are noisy

• Noisy values can not be used as keys in cryptography

• A Fuzzy Extractor/Helper Data Algorithm is needed

Components
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• Grid points represent ECC Code words

Enrollment

Key Reconstruction

• Random codeword C(S) is chosen

C

• Helper data W is generated (difference
between X and C) and stored in EEPROM

• Key K is generated and its public key P(K) is 
output and the Key K is destroyed

W

• Response X is measured

X

• Y is noisy response

Y• S’=DEC(C’)
• Y+W=C’

C’

W

Key Extraction from PUFs: Fuzzy Extractor

Assumption: Response X uniformly 
random

Components

Security Condition 

• I(K;W) ≤ε
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Properties

• The parameter ε can be made negligible in the 
security parameter

• The maximal length of a secret key is given 
by

where  I(X;Y) is the mutual information between

Enrollment: X Key Reconstruction: Y

I(X;Y)
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Practical Key extraction requirements

• Measured Data are continuous, not 
discrete!

• Uniformly Distributed Keys: All possible 
n-bit keys must be equally probable.

• Robustness: key extraction must be 
reproducible, regardless of measurement 
noise.

Secure Key Storage Device
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Statistics
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Secure Key Storage Device
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Uniformly Distributed Keys

• Quantization with equiprobable intervals 
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Achieving Robustness (I)

• Define helper-data W* that shifts measurements 
to the center of a quantization interval.
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Secure Key Storage Device
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Achieving Robustness (II)

• Assign bits to quantization intervals 
according to a Gray-code.
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Secure Key Storage Device
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Achieving Robustness (III)

• Concatenate bits from multiple sensors to 
construct a key of length n.

• Use an Error Correcting Code (ECC) and
the XOR-Fuzzy Extractor:
Enrollment: K, W=X⊕CK

Key Reconstruction: Dec(Y⊕W)
=Dec(Y⊕X⊕CK)
= CK iff d(X,Y)<T

Secure Key Storage Device
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Key Extraction, helperdata scheme

Enrollment Key Extraction

YX
W K’RNG WK ENC  C C’ DEC

YB
XB

Cap.
Meas.

Derive
W*

Binarization

W* Cap.
Meas.

Correct
with W*

Binarization

W*

Memory

Secure Key Storage Device
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Store key temporarily in Volatile Memory

Crypto
ProcessorIC

RAMEEPROM
Helper 
Data W

Al Al

coating

passivation

Measurement Circuit
AD-conversion

Fuzzy 
Extractor

W

Capacitances:X

Key
Key

Secure Key Storage Device
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Delete key afterwards

Crypto
ProcessorIC

RAMEEPROM
Helper 
Data W

Al Al

coating

passivation

Measurement Circuit
AD-conversion

Key 
Extractor

W
Key

Key

Crypto
ProcessorIC

RAMEEPROM
Helper 
Data W

Al Al

coating

passivation

Measurement Circuit
AD-conversion

Key 
Extractor

W

Secure Key Storage Device
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Attack Detection
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Secure Key Storage Device
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Secure Key Storage Device
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Model of Key Damage
Unattacked Device: Measurement Channel: X → Y   Model BSC: Error Rate: α

Attacked Device: Measurement Channel: X → Z       Model BSC: Error Rate: ε

Fuzzy Extractor corrects αn errors

αncK

<R>=εn

Nc= density of codewords x volume ball = 2n(h(ε)-h(α))

Secure Key Storage Device
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Key Damage: Experiments

α=1/30

ε=11/90

X 
(Enrollment)

Y 
(Reconstruction)

Z 
(After FIB)

Attack Complexity:

Nc=251 for 128 bit keys

Secure Key Storage Device
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Summary of Results

• Test ICs with 30 sensors per IC
• Deriving 3 bits per sensor 90 bits per IC
• Limit error correction: 4 of the 90 bits

– Depends on the coarseness of the 
quantisation

• Temperature compensation
• No humidity influence

Secure Key Storage Device
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Conclusions

• Developed Read-Proof Hardware (Invasive Attacks)
• Coating PUF
• Fuzzy Extractor

• Made a demonstrator
• Attacks can be detected
• Key Damage is shown

• Next Steps
• Further investigate side-channel leakages
• Investigate the impact of smaller holes
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