Fast Generation of Prime Numbers on Portable Devices

An Update

Marc Joye

Thomson Security Labs
marc.joye@thomson.net
(Joint Work with Pascal Paillier)

Outline

The Need for Prime Numbers

Our Algorithms

Analysis

Conclusion

RSA Is Everywhere

- $\mathrm{RSA}=95 \%$ of security products
- Alternative technology: elliptic curves
- RSA comes in many standards

Encryption PKCS \#1 (RSA-OAEP), IEEE P1363a
Signature PKCS \#1 (PSS/PSS-R), ISO/IEC 9796 (RW),
ANSI X9.31, NIST/FIPS PUB 186-2, ITU-T X. 509

- RSA has been impacting smart-card technologies for 10 years
- Each and every chip manufacturer proposes its own cryptoprocessor(s) = specific hardware design(s)
- Designing a cryptoprocessor $=$ huge investments
- financially
- technologically (heavy devs, strong patents)
- RSA performances are critical for all PK-enabled smart cards
images \& beyond

RSA In Practice

Key generation

1. Generate 2 large primes p and q (e.g., of 1024 bits)
$-\operatorname{gcd}(e, p-1)=\operatorname{gcd}(e, q-1)=1$ with $e=3$ or $2^{16}+1$, etc
2. Obtain

- public key: $N=p q$ and e
- private key: (p, q)

Signing a message

- Padding: msg $\longmapsto \mu(\mathrm{msg})$
- Signature: $S=\mu(\mathrm{msg})^{d} \bmod N$ where $d=e^{-1} \bmod (p-1)(q-1)$
Verification Given msg and S, check whether $S^{e} \bmod N=\mu(\mathrm{msg})$

Signature scheme \Longrightarrow authentication, integrity, non-repudiation

RSA Key Generation

Main step (complicated...)

- On input (random, ℓ, e), construct

$$
q \leftarrow \text { GenPrime(random, } \ell, e)
$$

- Invoke this twice to get p, q

Key derivation functions (easy)

- On input (e, p, q), compute
- $N=p q$
$- \begin{cases}d=e^{-1} \bmod (p-1)(q-1) & (\text { STD mode) } \\ d_{p}, d_{q}, i_{q} & \text { (CRT mode) }\end{cases}$

Off-Board/On-Board Key Generation

Off-board = keys generated in perso

- This is less secure for the end customer
- No dynamic control of key sizes, no re-generation

On-board key generation

- More secure for the end customer
- Re-generation on demand, dynamically-chosen sizes
- Applications can manage keys on their own
- Opens the way to key compression
- e.g., 1024-bit RSA key $\mapsto 20$ bytes

Specification of GenPrime

A prime number q generated by GenPrime in such that

1. q is an ℓ-bit number for a given bitsize ℓ
2. q belongs to $\left[q_{\text {min }}, q_{\text {max }}\right]$, e.g., $q_{\text {min }}=\left\lceil 2^{\ell-1 / 2}\right\rceil$ and $q_{\text {max }}=2^{\ell}$
3. $\operatorname{gcd}(q-1, e)=1$ where e is given

Also,

1. ℓ has a granularity of 1 bit, e.g., with $\ell \in[128, \ldots, 2048]$
2. GenPrime is pseudo-random: takes as input a random seed
3. GenPrime can integrate customizable constraints on the generated prime such as

- Rabin-Williams primes
- DSA primes (160 -bit $q, q \mid p-1$)
- standard ANSI X9.31 primes ($u \mid p-1$ and $s \mid p+1$)
- strong primes $(u|p-1, s| p+1$ and $t \mid u-1)$

Choice of Parameters

- The prime candidates lie in

$$
[v \Pi+t,(v+w) \Pi+t-1] \subseteq\left[q_{\min }, q_{\max }\right]
$$

- The prime candidates are automically coprime to

$$
\Pi=\prod p_{i}
$$

$\Longrightarrow \phi(\Pi) / \Pi$ as small as possible

Parameters: Π, t, v, w and $a \in \mathbb{Z}_{m}^{*} \backslash\{1\}$
Output: a random prime $q \in\left[q_{\text {min }}, q_{\text {max }}\right]$

1. Compute $I \leftarrow v \Pi$ and $m \leftarrow w \Pi$
2. Choose $k \in R \mathbb{Z}_{m}^{*}$
3. Set $q \leftarrow[(k-t) \bmod m]+t+l$
4. If $(T(q)=f a l s e)$ then
4.1 Set $k \leftarrow a \cdot k(\bmod m)$
4.2 Go to Step 3
5. Output q
$\left.\begin{array}{l}q \bmod \Pi \equiv[k-t]+t+0 \equiv k(\bmod \Pi) \\ k^{\text {(new })}=a \cdot k^{(\text {old })} \in \mathbb{Z}_{m}^{*} \Longrightarrow k^{(\text {new })} \in \mathbb{Z}_{\Pi}^{*}\end{array}\right\} \Longrightarrow \operatorname{gcd}(q, \Pi)=1$
images \& beyond

GenPrime 2

Parameters: Π odd, $b_{\min }, b_{\max }, v$
Output: a random prime $q \in\left[q_{\text {min }}, q_{\text {max }}\right]$

1. Compute $/ \leftarrow v \Pi$
2. Choose $k \in_{R} \mathbb{Z}_{I}^{*}$
3. Choose $b \in_{R}\left\{b_{\min }, \ldots, b_{\max }\right\}$ and set $t \leftarrow b \Pi$
4. Set $q \leftarrow\left\{\begin{array}{l}k+t+1 \\ (\Pi-k)+t+1\end{array} \quad(q\right.$ is odd)
5. If $(T(q)=f a l s e)$ then
5.1 Set $k \leftarrow 2 k(\bmod \Pi)$
5.2 Go to Step 4
6. Output q

Generation of Units

Proposition

Let k, r be integers modulo m and assume $\operatorname{gcd}(r, k, m)=1$. Then

$$
k \leftarrow\left[k+r\left(1-k^{\lambda(m)}\right) \bmod m\right] \in \mathbb{Z}_{m}^{*}
$$

Algorithm

1. Randomly choose $k \in[1, m[$
2. Set $U \leftarrow\left(1-k^{\lambda(m)}\right) \bmod m$
3. If $(U \neq 0)$ then
3.1 Choose a random $r \in[1, m[$
3.2 Set $k \leftarrow k+r U(\bmod m) \quad[" s e l f-c o r r e c t n e s s "]$
3.3 Go to Step 2
4. Return $k \in \mathbb{Z}_{m}^{*}$

Length Extendability

- Parameters of GenPrime are
- (Π, t, v, w)
- $\lambda(m)$ with $m=w \Pi$
- Heavily depend $q_{\text {min }}=\left\lceil 2^{\ell_{0}-1 / 2}\right\rceil$ and $q_{\max }=2^{\ell_{0}}$

Scalability

Our algorithms allow to use the parameters sized for ℓ_{0} to generate primes of bitsize $\ell \geqslant \ell_{0}$

RSA Primes

An RSA prime q must satisfy $\operatorname{gcd}(e, q-1)=1$

Arbitrary public exponent e

- The test $\operatorname{gcd}(e, q-1)=1$ should be explicitly added

"Small" public exponent e

- Let $e=\prod_{i} e_{i}^{\nu_{i}}$
- If $e_{i} \mid \Pi$ for all i then our algorithms can be adapted such that the condition $\operatorname{gcd}(e, q-1)=1$ is automatically satisfied
- This includes the popular choices $e=3$ or $e=17$

Safe/Quasi-Safe Primes

A safe prime q is such that $(q-1) / 2$ is also a prime
[More generally, a d-quasi-safe prime q is such that $(q-1) / 2^{d}$ is also a prime]

Modified search sequence

Our algorithms can be adapted such that every candidate q is coprime to Π but also $(q-1) / 2$ is coprime to Π

Performance Analysis

Average number of primality tests for generating q

Bitsize ℓ	256	384	512	768	1024
$H[\ell, 10]$	28.03	42.04	56.05	84.08	112.1
GenPrime $[\ell]$	18.72	26.12	33.29	46.90	59.98

images \& beyond

Security Properties

GenPrime has nearly maximal entropy

$$
H_{\max }-H<\frac{1-\gamma}{\ln 2}=0.609949
$$

Bitsize ℓ	256	384	512	768	1024
$H_{\max }$	246.767	374.179	501.762	757.176	1012.76
H	246.194	373.596	501.173	756.581	1012.16
$H_{\max }-H$	0.572795	0.583093	0.588773	0.594834	0.598092

GenPrime has negligible collision probalility

Bitsize ℓ	256	384	512	1024
$\nu \leqslant$	$3.30 \cdot 10^{-152}$	$4.28 \cdot 10^{-229}$	$4.93 \cdot 10^{-306}$	$5.49 \cdot 10^{-614}$

Summary

- Improved techniques
- better performances than previously suggested algorithms
- reduced statistical deviation (generation of units)
- Extended capabilities
- length extendability
- RSA condition automatically satisfied for "small" e
- Safe primes and quasi-safe primes
- modified search sequence
- "Provably" reliable algorithms
- excellent output distribution
- negligible collision probability

