
Fast Generation of Prime
Numbers on Portable Devices
An Update

Marc Joye

Thomson Security Labs
marc.joye@thomson.net

(Joint Work with Pascal Paillier)

Outline

The Need for Prime Numbers

Our Algorithms

Analysis

Conclusion

mailto:marc.joye@thomson.net


RSA Is Everywhere

• RSA = 95% of security products

Alternative technology: elliptic curves

• RSA comes in many standards

Encryption PKCS #1 (RSA-OAEP), IEEE P1363a
Signature PKCS #1 (PSS/PSS-R), ISO/IEC 9796 (RW),

ANSI X9.31, NIST/FIPS PUB 186-2, ITU-T X.509

• RSA has been impacting smart-card technologies for 10 years

Each and every chip manufacturer proposes its own
cryptoprocessor(s) = specific hardware design(s)
Designing a cryptoprocessor = huge investments
• financially
• technologically (heavy devs, strong patents)

RSA performances are critical for all PK-enabled smart cards

RSA In Practice

Key generation

1. Generate 2 large primes p and q (e.g., of 1024 bits)

gcd(e, p − 1) = gcd(e, q − 1) = 1 with e = 3 or 216 + 1, etc

2. Obtain

public key: N = p q and e
private key: (p, q)

Signing a message

• Padding: msg 7−→ µ(msg)
• Signature: S = µ(msg)d mod N where

d = e−1 mod (p − 1)(q − 1)

Verification Given msg and S , check whether Se mod N = µ(msg)

Signature scheme =⇒ authentication, integrity,
non-repudiation



RSA Key Generation

Main step (complicated. . . )

• On input (random, `, e), construct

q ← GenPrime(random, `, e)

Invoke this twice to get p, q

Key derivation functions (easy)

• On input (e, p, q), compute

N = p q(
d = e−1 mod (p − 1)(q − 1) (STD mode)

dp, dq, iq (CRT mode)

Off-Board/On-Board Key Generation

Off-board = keys generated in perso
• This is less secure for the end customer

• No dynamic control of key sizes, no re-generation

On-board key generation
• More secure for the end customer

• Re-generation on demand, dynamically-chosen sizes

• Applications can manage keys on their own

• Opens the way to key compression

e.g., 1024-bit RSA key 7→ 20 bytes



Specification of GenPrime

A prime number q generated by GenPrime in such that

1. q is an `-bit number for a given bitsize `

2. q belongs to [qmin, qmax], e.g., qmin = d2`−1/2e and qmax = 2`

3. gcd(q − 1, e) = 1 where e is given

Also,

1. ` has a granularity of 1 bit, e.g., with ` ∈ [128, . . . , 2048]

2. GenPrime is pseudo-random: takes as input a random seed

3. GenPrime can integrate customizable constraints on the generated
prime such as

Rabin-Williams primes
DSA primes (160-bit q, q | p − 1)
standard ANSI X9.31 primes (u | p − 1 and s | p + 1)
strong primes (u|p − 1, s|p + 1 and t|u − 1)

Choice of Parameters

��������������������������

vΠ
+

t

qmin

(v
+

w
)Π

+
t−

1

qmax

wΠ − 1

• The prime candidates lie in

[vΠ + t, (v + w)Π + t − 1] ⊆ [qmin, qmax]

• The prime candidates are automically coprime to

Π =
∏

pi

=⇒ φ(Π)/Π as small as possible



GenPrime

Parameters: Π, t, v, w and a ∈ Z∗m \ {1}
Output: a random prime q ∈ [qmin, qmax]

1. Compute l ← vΠ and m← wΠ

2. Choose k ∈R Z∗m
3. Set q ← [(k − t) mod m] + t + l

4. If (T(q) = false) then

4.1 Set k ← a · k (mod m)
4.2 Go to Step 3

5. Output q

q mod Π ≡ [k − t] + t + 0 ≡ k (mod Π)
k(new) = a · k(old) ∈ Z∗m =⇒ k(new) ∈ Z∗Π

}
=⇒ gcd(q,Π) = 1

GenPrime 2

Parameters: Π odd, bmin, bmax, v
Output: a random prime q ∈ [qmin, qmax]

1. Compute l ← vΠ

2. Choose k ∈R Z∗Π
3. Choose b ∈R {bmin, . . . , bmax} and set t ← b Π

4. Set q ←

{
k + t + l

(Π − k) + t + l
(q is odd)

5. If (T(q) = false) then

5.1 Set k ← 2k (mod Π)
5.2 Go to Step 4

6. Output q



Generation of Units

Proposition

Let k, r be integers modulo m and assume gcd(r , k,m) = 1. Then

k ← [k + r(1− kλ(m)) mod m] ∈ Z∗m

Algorithm

1. Randomly choose k ∈ [1,m[

2. Set U ← (1− kλ(m)) mod m

3. If (U 6= 0) then

3.1 Choose a random r ∈ [1, m[
3.2 Set k ← k + rU (mod m) [“self-correctness”]
3.3 Go to Step 2

4. Return k ∈ Z∗m

Length Extendability

��������������������������

vΠ
+

t

qmin

(v
+

w
)Π

+
t−

1

qmax

wΠ − 1

• Parameters of GenPrime are

(Π, t, v , w)
λ(m) with m = wΠ

• Heavily depend qmin = d2`0−1/2e and qmax = 2`0

Scalability

Our algorithms allow to use the parameters sized for `0 to generate
primes of bitsize ` > `0



RSA Primes

An RSA prime q must satisfy gcd(e, q − 1) = 1

Arbitrary public exponent e

• The test gcd(e, q − 1) = 1 should be explicitly added

“Small” public exponent e

• Let e =
∏

i ei
νi

• If ei | Π for all i then our algorithms can be adapted such that the
condition gcd(e, q − 1) = 1 is automatically satisfied

This includes the popular choices e = 3 or e = 17

Safe/Quasi-Safe Primes

A safe prime q is such that (q − 1)/2 is also a prime

[More generally, a d-quasi-safe prime q is such that (q − 1)/2d is also a prime]

Modified search sequence

Our algorithms can be adapted such that every candidate q is coprime to
Π but also (q − 1)/2 is coprime to Π



Performance Analysis

Average number of primality tests for generating q

Bitsize ` 256 384 512 768 1024

H[`, 10] 28.03 42.04 56.05 84.08 112.1
GenPrime[`] 18.72 26.12 33.29 46.90 59.98

Security Properties

GenPrime has nearly maximal entropy

Hmax − H <
1− γ

ln 2
= 0.609949

Bitsize ` 256 384 512 768 1024

Hmax 246.767 374.179 501.762 757.176 1012.76
H 246.194 373.596 501.173 756.581 1012.16

Hmax − H 0.572795 0.583093 0.588773 0.594834 0.598092

GenPrime has negligible collision probalility

Bitsize ` 256 384 512 1024

ν 6 3.30 · 10−152 4.28 · 10−229 4.93 · 10−306 5.49 · 10−614



Summary

• Improved techniques

better performances than previously suggested algorithms
reduced statistical deviation (generation of units)

• Extended capabilities

length extendability
RSA condition automatically satisfied for “small” e

• Safe primes and quasi-safe primes

modified search sequence

• “Provably” reliable algorithms

excellent output distribution
negligible collision probability


