Fast Generation of Prime Numbers on Portable Devices

An Update

Marc Joye

Thomson Security Labs marc.joye@thomson.net

(Joint Work with Pascal Paillier)

Outline

The Need for Prime Numbers

Our Algorithms

Analysis

Conclusion

RSA Is Everywhere

	Security Marketplace, 2005
 RSA = 95% of security products 	
 Alternative technology: elliptic curves 	RSA
 RSA comes in many standards 	
Encryption PKCS #1 (RSA-OAEP), IEEE P1363a Signature PKCS #1 (PSS/PSS-R), ISO/IEC 979 ANSI X9.31, NIST/FIPS PUB 186-2, I	6 (RW), TU-T X.509
• RSA has been impacting smart-card technologies for	or 10 years
 Each and every chip manufacturer proposes its ow cryptoprocessor(s) = specific hardware design(s) Designing a cryptoprocessor = huge investments financially technologically (heavy devs, strong patents) 	'n
 RSA performances are critical for all PK-enabled s 	smart cards

RSA In Practice

Key generation

1. Generate 2 large primes p and q (e.g., of 1024 bits)

-
$$\operatorname{\mathsf{gcd}}(e,p-1)=\operatorname{\mathsf{gcd}}(e,q-1)=1$$
 with $e=3$ or $2^{16}+1$, etc

- 2. Obtain
 - public key: N = p q and e
 - private key: (p,q)

Signing a message

- Padding: $msg \mapsto \mu(msg)$
- Signature: $S = \mu(msg)^d \mod N$ where $d = e^{-1} \mod (p-1)(q-1)$

Verification Given msg and S, check whether $S^e \mod N = \mu(\text{msg})$

Signature scheme \implies authentication, integrity, non-repudiation

RSA Key Generation

Main step (complicated...)

• On input $(random, \ell, e)$, construct

 $q \gets \texttt{GenPrime}(\text{random}, \ell, e)$

Invoke this twice to get p, q

Key derivation functions (easy)

- On input (*e*, *p*, *q*), compute
 - N = p q- $\begin{cases} d = e^{-1} \mod (p-1)(q-1) & (\text{STD mode}) \\ d_p, d_q, i_q & (\text{CRT mode}) \end{cases}$

Off-Board/On-Board Key Generation

Off-board = keys generated in perso

- This is less secure for the end customer
- No dynamic control of key sizes, no re-generation

On-board key generation

- More secure for the end customer
- Re-generation on demand, dynamically-chosen sizes
- Applications can manage keys on their own
- Opens the way to key compression
 - e.g., 1024-bit RSA key \mapsto 20 bytes

A prime number q generated by GenPrime in such that

- **1.** q is an ℓ -bit number for a given bitsize ℓ
- 2. q belongs to $[q_{\min}, q_{\max}]$, e.g., $q_{\min} = \lceil 2^{\ell 1/2} \rceil$ and $q_{\max} = 2^{\ell}$
- 3. gcd(q-1, e) = 1 where e is given

Also,

- **1.** ℓ has a granularity of 1 bit, e.g., with $\ell \in [128, \dots, 2048]$
- 2. GenPrime is pseudo-random: takes as input a random seed
- **3.** GenPrime can integrate customizable constraints on the generated prime such as
 - Rabin-Williams primes
 - DSA primes (160-bit $q, q \mid p-1$)
 - standard ANSI X9.31 primes $(u \mid p-1 \text{ and } s \mid p+1)$
 - strong primes (u|p-1, s|p+1 and t|u-1)

Choice of Parameters

• The prime candidates lie in

 $[v\Pi + t, (v + w)\Pi + t - 1] \subseteq [q_{\min}, q_{\max}]$

• The prime candidates are automically coprime to

$\Pi = \prod p_i$

 $\implies \phi(\Pi)/\Pi$ as small as possible

Parameters: Π , t, v, w and $a \in \mathbb{Z}_m^* \setminus \{1\}$ Output: a random prime $q \in [q_{\min}, q_{\max}]$ 1. Compute $l \leftarrow v\Pi$ and $m \leftarrow w\Pi$ 2. Choose $k \in_R \mathbb{Z}_m^*$ 3. Set $q \leftarrow [(k - t) \mod m] + t + l$ 4. If (T(q) = false) then 4.1 Set $k \leftarrow a \cdot k \pmod{m}$ 4.2 Go to Step 3 5. Output q

$$q \mod \Pi \equiv [k - t] + t + 0 \equiv k \pmod{\Pi}$$
$$k^{(\text{new})} = a \cdot k^{(\text{old})} \in \mathbb{Z}_m^* \implies k^{(\text{new})} \in \mathbb{Z}_\Pi^* \end{cases} \implies \gcd(q, \Pi) = 1$$

GenPrime 2

- **1.** Compute $I \leftarrow v\Pi$
- **2.** Choose $k \in_R \mathbb{Z}_{\Pi}^*$

3. Choose
$$b \in_R \{b_{\min}, \ldots, b_{\max}\}$$
 and set $t \leftarrow b \Pi$

4. Set
$$q \leftarrow \begin{cases} k+t+l \ (\Pi-k)+t+l \end{cases}$$
 (q is odd)

- 5. If (T(q) = false) then 5.1 Set $k \leftarrow 2k \pmod{\Pi}$ 5.2 Go to Step 4
- **6.** Output *q*

Generation of Units

Proposition

Let k, r be integers modulo m and assume gcd(r, k, m) = 1. Then

 $k \leftarrow [k + r(1 - k^{\lambda(m)}) \mod m] \in \mathbb{Z}_m^*$

Algorithm

1. Randomly choose $k \in [1, m[$ 2. Set $U \leftarrow (1 - k^{\lambda(m)}) \mod m$ 3. If $(U \neq 0)$ then
3.1 Choose a random $r \in [1, m[$ 3.2 Set $k \leftarrow k + rU \pmod{m}$ ["self-correctness"]
3.3 Go to Step 2
4. Return $k \in \mathbb{Z}_m^*$

Length Extendability

• Parameters of GenPrime are

$$-(\Pi,t,v,w)$$

-
$$\lambda(m)$$
 with $m = w\Pi$

• Heavily depend $q_{\min} = \lceil 2^{\ell_0 - 1/2} \rceil$ and $q_{\max} = 2^{\ell_0}$

Scalability

Our algorithms allow to use the parameters sized for ℓ_0 to generate primes of bitsize $\ell \geqslant \ell_0$

RSA Primes

An RSA prime q must satisfy gcd(e, q - 1) = 1

Arbitrary public exponent e

• The test gcd(e, q - 1) = 1 should be explicitly added

"Small" public exponent e

- Let $e = \prod_i e_i^{\nu_i}$
- If e_i | Π for all i then our algorithms can be adapted such that the condition gcd(e, q − 1) = 1 is automatically satisfied
 - This includes the popular choices e = 3 or e = 17

Safe/Quasi-Safe Primes

A safe prime q is such that (q-1)/2 is also a prime

[More generally, a d-quasi-safe prime q is such that $(q-1)/2^d$ is also a prime]

Modified search sequence

Our algorithms can be adapted such that every candidate q is coprime to Π but also (q-1)/2 is coprime to Π

Performance Analysis

Average	number	of prin	nality	tests	for gen	erating
	Bitsize ℓ	256	384	512	768	1024
	$H[\ell, 10]$	28.03	42.04	56.05	84.08	112.1
	$\texttt{GenPrime}[\ell]$	18.72	26.12	33.29	46.90	59.98

Security Properties

GenPrime has nearly maximal entropy							
$H = H < \frac{1 - \gamma}{1 - \gamma} = 0.600040$							
$n_{\rm max} - n < \frac{1}{\ln 2} = 0.009949$							
	Bitsize ℓ	256	384	512	768	1024	
	$H_{\rm max}$	246.767	374.179	501.762	757.176	1012.76	
	Н	246.194	373.596	501.173	756.581	1012.16	
	$H_{\rm max} - H$	0.572795	0.583093	0.588773	0.594834	0.598092	

GenPrime has negligible collision probalility							
	Bitsize ℓ 256		384	512	1024		
-	$\nu \leqslant$	$3.30 \cdot 10^{-152}$	$4.28 \cdot 10^{-229}$	$4.93\cdot10^{-306}$	$5.49 \cdot 10^{-614}$		

THOMSO

Summary

- Improved techniques
 - better performances than previously suggested algorithms
 - reduced statistical deviation (generation of units)
- Extended capabilities
 - length extendability
 - RSA condition automatically satisfied for "small" e
- Safe primes and quasi-safe primes
 - modified search sequence
- "Provably" reliable algorithms
 - excellent output distribution
 - negligible collision probability

