Fast Generation of Prime

Numbers on Portable Devices
An Update

Marc Joye

Thomson Security Labs
marc.joye@thomson.net

(Joint Work with Pascal Paillier)

A
EYA

4BORY

3
Q
>3
=
<

1
:
2
>

Outline

The Need for Prime Numbers
Our Algorithms
Analysis

Conclusion

mailto:marc.joye@thomson.net

RSA Is Everywhere

Security Marketplace, 2005

® RSA = 95% of security products
— Alternative technology: elliptic curves

‘

® RSA comes in many standards
Encryption PKCS #1 (RSA-OAEP), IEEE P1363a

Signature PKCS #1 (PSS/PSS-R), ISO/IEC 9796 (RW),
ANSI X9.31, NIST/FIPS PUB 186-2, ITU-T X.509

® RSA has been impacting smart-card technologies for 10 years

— Each and every chip manufacturer proposes its own

cryptoprocessor(s) = specific hardware design(s)
— Designing a cryptoprocessor = huge investments

® financially
® technologically (heavy devs, strong patents)

— RSA performances are critical for all PK-enabled smart cards

THOMSON)

images & beyand/

RSA In Practice

Key generation
1. Generate 2 large primes p and g (e.g., of 1024 bits)
— gcd(e,p— 1) = ged(e, g — 1) = 1 with e = 3 or 2 + 1, etc
2. Obtain
— public key: N =pgqg and e
— private key: (p, q)
Signing a message
® Padding: msg — pu(msg)
® Signature: S = p(msg)? mod N where
d=e1mod(p—1)(g—1)
Verification Given msg and S, check whether $¢ mod N = ;(msg)

Signature scheme —

authentication, integrity,
non-repudiation

THOMSON)

images & beyand/

RSA Key Generation

Main step (complicated...)

® On input (random, ¢, €), construct

q < GenPrime(random, ¢, e)

— Invoke this twice to get p, g

v

Key derivation functions (easy)

® On input (e, p, q), compute

— N=pgq
_)d= e *mod (p—1)(qg—1) (STD mode)
dp, dg, ig (CRT mode)

THOMSON)

images & beyand/

Off-Board/On-Board Key Generation

Off-board = keys generated in perso

® This is less secure for the end customer

® No dynamic control of key sizes, no re-generation

On-board key generation
® More secure for the end customer
Re-generation on demand, dynamically-chosen sizes

©
® Applications can manage keys on their own
o

Opens the way to key compression
— e.g., 1024-bit RSA key — 20 bytes

THOMSON)

images & beyand/

Specification of GenPrime

A prime number g generated by GenPrime in such that
1. g is an /-bit number for a given bitsize ¢
2. g belongs to [Gumins Gmax), €8 Gmin = [207?] and Guax = 2°
3. gcd(g — 1,e) = 1 where e is given

Also,
1. ¢ has a granularity of 1 bit, e.g., with ¢ € [128,...,2048]

2. GenPrime is pseudo-random: takes as input a random seed

3. GenPrime can integrate customizable constraints on the generated
prime such as
— Rabin-Williams primes
— DSA primes (160-bit q, g | p — 1)
— standard ANSI X9.31 primes (u|p—1ands|p+1)
— strong primes (ulp— 1, s|p+ 1 and tjlu—1)

THOMSON)

images & beyand/

Choice of Parameters

X @Q
x X
é\ NS

wlill — 1
}7

(min Gmax

® The prime candidates lie in
[VU + ta (V + W)H +t—]-] g [qmina qmax]
® The prime candidates are automically coprime to

HZHP,'

= ¢(I1)/II as small as possible

THOMSON)

images & beyand/

GenPrime

Parameters: II, t, v, w and ac Z} \ {1}
Output: a random prime ¢ € [Gmin, Gmax]

Compute [« vI[and m «— wlil
Choose k €r Zj,

Set g« [(k—t)mod m|+t+/
If (T(q) = false) then

4.1 Set k< a-k (mod m)
4.2 Go to Step 3

5. Output ¢

) A

gmod Il =[k—t]+t+0=k (mod II) B
k(new) — 5. j(old) €Lt — f (new) EZ*H = ng(qaﬂ)_l

THOMSON)

images & beyand/

GenPrime 2

Parameters: II odd, byin, bmax, V
Output: a random prime ¢ € [Gmin, Gmax]

1. Compute [« vII
2. Choose k €r Z7;
3. Choose b €gr {bmin,---,bmax} and set t« blIl

k+t+1
4. Set (g i dd)
e qH{(Hk)—l—t—l—/ g is o

5. If (T(q) = false) then

5.1 Set k <« 2k (mod IT)
5.2 Go to Step 4

6. Output g

THOMSON)

images & beyand/

Generation of Units

Proposition

Let k, r be integers modulo m and assume gcd(r, k,m) = 1. Then

k — [k + r(1 — k*™) mod m] € Z*,

Algorithm

1. Randomly choose k € [1, m[
2. Set U« (1 — k*m) mod m
3. If (U #0) then

3.1 Choose a random r € [1, m|
3.2 Set k«— k+ rU (mod m) [“self-correctness”|
3.3 Go to Step 2

4. Return k € Z7,

THOMSON)

images & beyand/

Length Extendability

Q
< S

A
—

Gmin Gmax

N
wIl —1 N

® Parameters of GenPrime are
- (I, t,v,w)
— AX(m) with m = wll

® Heavily depend guin = [2°71/2] and gax = 2

Scalability

Our algorithms allow to use the parameters sized for ¢, to generate
primes of bitsize ¢ > /g

THOMSON)

images & beyand/

RSA Primes

An RSA prime g must satisfy gcd(e, g — 1) =1

Arbitrary public exponent e

® The test gcd(e, g — 1) = 1 should be explicitly added

“Small” public exponent e

® lete=][;&"

® |f ¢ | II for all i then our algorithms can be adapted such that the
condition ged(e, g — 1) = 1 is automatically satisfied

— This includes the popular choices e = 3 or e = 17

THOMSON)

images & beyand/

Safe/Quasi-Safe Primes

A safe prime q is such that (g — 1)/2 is also a prime

[More generally, a d-quasi-safe prime g is such that (g — 1)/29 is also a prime]

Modified search sequence

Our algorithms can be adapted such that every candidate g is coprime to
IT but also (g — 1)/2 is coprime to IT

THOMSON)

images & beyand/

Performance Analysis

Average number of primality tests for generating g

Bitsize ¢ 256 384 512 768 1024
H[/,10] |28.03 42.04 56.05 84.08 112.1
GenPrime[/] | 18.72 26.12 33.29 46.90 59.98

Average Gener

memmm

enerated Prime -»

THOMSON)

images & beyand/

Security Properties

GenPrime has nearly maximal entropy

o H<l _27 — 0.609949

In

Bitsize ¢ 256 384 512 768 1024
s 246.767 374.179 501.762 757.176 1012.76
H 246.194 373.596 501.173 756.581 1012.16
Hmax — H|0.572795 0.583093 0.588773 0.594834 0.598092

GenPrime has negligible collision probalility

Bitsize /[256 384 512 1024
v< [330-107%% 4.28-107%* 4.93-10°° 5.49.10"°"

THOMSON)

images & beyand/

Summary

® |mproved techniques

— better performances than previously suggested algorithms
— reduced statistical deviation (generation of units)

® Extended capabilities

— length extendability
— RSA condition automatically satisfied for “small” e

® Safe primes and quasi-safe primes
— modified search sequence
® “Provably” reliable algorithms

— excellent output distribution
— negligible collision probability

THOMSON)

images & beyand/

