DFA against AES Key Expansion

David Peacham & Byron Thomas
(SiVenture)
CHES 06 Rump Session
Background

Several existing DFA attacks on AES:

– [DUSART et al] Corrupt state bytes in penultimate round

– [GIRAUD] Corrupt single bytes in the penultimate and antepenultimate subkeys
 • Requires a slow final search (2 32-bit exhaustive searches)
 • 250 true / corrupted ciphertext pairs

– [Chen-Yen] improves upon Giraud’s attack to make the analysis easier
 • 24-bits of search; 1 true ciphertext with 22 corrupted texts
Our Attack: fault model

Corrupt the values of a single *iteration* of the key expansion for the penultimate round subkey.
Our Attack: methodology

- First corrupt last key iteration for penultimate round (rightmost column of key)
- Express the state prior to the penultimate key add as an equation for each byte involving some ciphertext bytes and some penultimate round key bytes
 - E.g. Column 0, row 0: \(P_0^{S'}[P_0^{R10}S[P_13]Z0] \)
Our attack: Methodology

- Rewrite these in the presence of faults
 - E.g. Column 0, row 0:
 \[P_0^S'[P_0^R10^S[P_{13}^p13]^Z0^z0] \]

- But these two must be equal so
 - \[P_0^S'[P_0^R10^S[P_{13}^p13]^Z0^z0 = P_0^S'[P_0^R10^S[P_{13}^p13]^Z0^z0 \]
 \[S[P_{13}^p13]^z0 = 0 \]

- Get similar equations for other bytes
Our attack: Methodology

- Now we just need to solve simultaneously, e.g.:
 1. \(S[P14]^S[P14^p14]^z1 = 0 \)
 2. \(S[P14]^S[P14^p14]^p13^z13 = 0 \)

 1. \(S[P14]^S[P14^p14] = z1 \)
 2. \(z1^p13^z13 = 0 \)

- This can be solved directly to find \(p13 \) since \(z1 \) and \(z13 \) are the output differences in the 1st and 13th bytes

- \(S[P13]^S[P13^p13]^z0 = 0 \) so can use our \(p13 \) and perform an 8-bit search to find the key byte \(P13 \)
Our Attack: finishing up

- Note: using one fault, we find two possible values (the true value and the corrupted value).
- Need 3 pairs per key iteration to derive key bytes definitively.
- Using the same set of faults (last column of the key) can find P_{14}, P_{15}, $P_2 \oplus P_6$, $P_1 \oplus P_5 \oplus P_9$, $P_3 \oplus S[P_{12}]$
Our Attack: finishing up

- Then we target one column to the left and rewrite the equations to find more key bytes
- And then continue back…
- After causing faults in the first column of the key, can derive all 16 bytes of P
- The unknowns of each equation are found using either an 8-bit or a 16-bit search
Our attack: Advantages

- Naïve reverse-calculation countermeasures are unlikely to detect the fault
- The attack requires 12 pairs of correct and faulty ciphertexts (3 per key iteration)
- Only a single round key has to be faulted
- The fault model applies to schedule-on-demand
- It is simple to understand
- It is efficient: several 16-bit and 8-bit searches