Challenges for Trusted Computing

Ahmad-Reza Sadeghi
Horst Görtz Institute for It security
Ruhr-University Bochum

sadeghi@crypto.rub.de

CHES, Yokohama 2006

Content

- o Motivation
 - o Trust Issues and Vocabulary
 - o Complications in Distributed Application
- Towards Trustworthy Computing Platforms
 - o Objectives and Primary Goals
 - Desired Primitives and the Need for Secure Hardware and Software
- o Trusted Computing Group (TCG) Approach
- o Security Architectures Based on Virtualization
- o Selected Research and Development Projects
- Reactions to the Trusted Computing Group
 - o Concerns, open source, law and politics
- o Some Technical Challenges
- o Summary and Outlook

Motivation

- o How do we define "trustworthiness" in a distributed open IT environment?
- o How can we determine/verify/measure it?
- o How could common computing platforms support such functionality and what are the consequences?

Future....

A Memo

- o "Trustworthy Computing is the highest priority for all the work we are doing. We must lead the industry to a whole new level of trustworthiness in computing"
- o ".... Trustworthy Computing is computing that is as available, reliable and secure as electricity, water services and telephony."
- o "Our software should be so fundamentally secure that customers never even worry about it."
- o "No Trustworthy Computing platform exists today. It is only in the context of the basic redesign we have done around"
- o "Keep our customers' trust at every level -- from the way we develop software, to our support efforts, to our operational and business practices. As software has become ever more complex, interdependent and interconnected, our reputation as a company has in turn become more vulnerable."
- o "Key aspects are availability, security, and privacy"
- Trustworthiness is a much broader concept than security, and winning our customers' trust involves more than just fixing bugs

Trust Issues and Vocabulary (1)

- o **Trust:** Complicated notion studied and debated in different areas (social-sciences, philosophy, psychology, computer science,...)
- o In Social Sciences, trust is
 - o a psychological state comprising the intention to accept vulnerability based upon positive expectations of the intentions or behavior of another [RoSiBuCa98]
 - o a *mechanism* to reduce social complexity (how we think about the world) [Luhm1979]
 - o an *action* that involves the voluntary placement of resources (physical, financial, intellectual, or temporal) at the disposal of the trustee with no real commitment from the trustee [Cole1990]
 - o temporal and has risk aspects

Trust Issues and Vocabulary (2)

o In IT security literature

- o a **Trusted System** or component is one whose failure can break the security policy [Ande2001]
 - o Number of trusted components should be minimized
- o **Trustworthiness** is assurance that a system or a component will perform as expected [AvLaLaRa2004]
 - o Corresponds to "Trusted" as defined by Trusted Computing Group (TCG)

Complications in Distributed Applications

o Multiple parties involved

o Provide (require) services (resources)

- o Have different (possibly conflicting) interests (policies)
- o Typically distrust each other (minimal TCB)
 - o TCB (Trusted Computing Base)

Application Scenarios

- o E-Services
 - o Government (e.g., e-Voting integrity)
 - o Health (confidentiality of sensitive medical records)
 - o Commerce ((Non)-enforceability of digital signature)
- o Rights and Document Management
 - o Enterprise
 - o Controlled usage and distribution in Supply Chains
 - o Fair use
 - o Private copies
 - o Copies among different platform types allowed
 - o First sale
 - o Transfer of digital content
- o Outsourcing of services
- o Next generation mobile devices

Example: Grid Computing

Model

- o Main parties (simplified): resource providers (RP) and users (U)
- o In practice more parties: Middleware provider, application provider
- o Problem: User-provider trust asymmetry [LoRaSaScSt2006, MaJiMa2006]
 - o Grid users forced to place (often, unjustifiable) trust on providers
 - o Security measures often assume Grid user as potential adversary

o Currently used measures

o Contracts, standard authentication and authorization mechanisms

Requirements

o Functional

- o Sharing resources among different Grid jobs on one platform
- o Interoperability
- o Auditing
- o Delegation and single sign on
- o Accounting and billing

o **Security**

- o Confidentiality and integrity of data
- o Privacy (regarding underlying platform)
- o Authentication
- o Authorization

o Availability and correctness

o Fail-safe short and long term preservation of users data

Towards Trustworthy Platforms

Objectives

o Multilateral Security [Rann1994]

- o Considers different and possibly conflicting security requirements of different parties and strives to balance these requirements
- o Refers to (classical) security goals (confidentiality, integrity and availability)
- o Typical conflict occurs between the wish for privacy and the interest in cooperation

o **Problems**

- o Insufficient protection in SW and HW of existing computing platforms
 - o Malicious code (viruses, Trojan horses, ...)
 - o DMA (Direct Memory Access)
 - o No secure storage
- o Main reasons
 - o High complexity and poor fault isolation of operating systems
 - o Lack of functional and protection mechanisms in hardware
 - o Security unawareness of users or security measures still not useable enough

Main Role of Trusted Computing [Kuhl2003, KuGe2003]

- o Enable the reasoning about the "trustworthiness" of own and other's IT system (reporting their state)
- o ... in contractual sense

Primary Goals

- o Improve security of computing platforms
- o Reuse existing modules
 - o e.g., GUI, common OS
- o Applicable for different OS
 - No monopoly, space for innovation (small and mid-sized companies)
- o Open architecture
 - o Use open standards and open source components
 - o Trustworthiness/costs/reliability/compatibility
- o Efficient portability
- o Allow realization of new applications/business models
 - o Providing multilateral security needed for underlying applications
 - o Avoiding potential misuse of trusted computing functionalities
 - o Based on different sets of assumptions and trust relations

Basic Desired Primitives

Integrity verification (Attestation)

- o Allows a computing platform to export verifiable information about its properties (e.g., identity and initial state)
- o Comes from the requirement of assuring the executing image and environment of an application located on a remote computing platform
- o **Sealed/Secure Storage** allows applications
 - o to persist data securely between executions using traditional untrusted storage like hard drives
 - o To encrypt data and assured to be the only capable of decrypting it

o Strong process isolation

- o Assured (memory space) separation between processes
- Prevents a process from reading or modifying another process's memory

o Secure I/O

- o Allows application to assure the end-points of input and output operations
- o A user can be assured to securely interact with the intended application

Need for Secure Hardware and Software

o Hardware

- o Even a secure operating system cannot verify its own integrity (another party is needed)
- o Secure storage
- o DMA control
 - o Isolation of security-critical programs
- o Hardware-based random numbers
 - o Fundamental to cryptography

Software (Operating Systems)

- o Hardening, e.g., SE Linux [LoSm2001]
 - o Still too complex and large TCB (Trusted Computing Base)
- o Complete new design
 - o e.g., Trusted Mach, EROS (Extremely Reliable Operating System) [TrustedMach1991, Shap1999]
 - o Compatibility problem, less market acceptance
- o Secure Virtual Machine Monitors (e.g., [Sailer et al 2005])
 - o Allow reuse of legacy software

Trusted Computing Group (TCG) Approach – A Short Introduction

Background

TCG (Trusted computing Group)

- o Consortium 136 enterprises (AMD, HP, IBM, Infineon, Intel, Microsoft, STM, ...)
- Claimed role: "...to develop, define and promote open, vendor-neutral industry specification for trusted computing. These include hardware building blocks and software interface specifications across multiple platforms and operating environments..... " [TCG]

o Basic idea

- Assurance of a limited set of immutable cryptographic functionalities based on which a larger set of security functions can be provided
- o Minimum tamper-resistant assumptions

Uses the concept of roots/chain of trust [ArFaSm1997, Itoi et al 2001]

- o Entities (functions) trusted to function correctly without external oversight
- o Lower layer verifies the integrity of higher levels before booting them

Specified several specifications

- o Trusted Platform Module (TPM)
 - o Set of cryptographic functionalities and features
- o Trusted Software Stack (TSS)
 - TSS is a software specification that provides a standard API for accessing the functions of the TPM (resource management of TPM, ensuring synchronized access)
 - o Open source implementation [TrouSerS]

o Different working groups

o e.g., TPM/TSS, Infrastructure, Mobile,...

Model

o Main objectives

 Integrity and confidentiality of certain data (e.g., cryptographic keys)

o Trust model

- o Roots of Trust for Measurements (RTM): Process that measures platforms integrity
- Roots of Trust for Storage (RTS): A logical entity capable of maintaining values generated by the RTM
- o Roots of Trust for Reporting (RTR): A mechanism for correctly exporting the values held in RTM to any interested party
- Minimal essential roots of trust are RTM and TPM

o Adversary model

o Specifications focus on software attacks

o Remarks

 According to TCG an entity can be trusted if it always behaves in the expected manner for the intended purpose

Core TCG Components and Functionalities

Trusted Platform Module (TPM)

- o Current implementation is a dedicated hardware chip on main board
- o Two versions 1.1b and 1.2 [TPM2002, TPM2003]

o Manufacturer (Atmel, Infenion, Sinosun, STM,...)

Details

TPM Forecast

- o Many vendors ship platforms equipped with TPM e.g., IBM, HP, Siemens-Fujitsu (see [TPMMatrix2006])
- o Microsoft' Vista [Vista2006] uses TPM functionalities for secure setup (requires TPM v1.2 [TPM2003])

TPM Features

- Hardware-based random number generators
- Cryptographic functions
 - o Hash (SHA-1), signature, encryption (RSA), key generation
- o Platform Configuration Registers (PCR)
 - o Storage for (integrity) measurements
 - o Metric for measurements is computing hash values
 - o PCR values are so-called extensions extend(PCR_N, Input) = SHA1(PCR_N || Input)

o Sealing/Binding

- o Binding data to TPM state represented by a subset of PCRs
- o S_i current state, S₀ initial state
 - o $[Data]_{S_0}^{PK} \leftarrow Seal(State,PK,Data)$
 - o Data=Unseal([Data] $_{S_0}^{PK}$) \Leftrightarrow $[Data]_{S_0}^{PK} \leftarrow Seal(State,PK,Data) \land (S_i = S_0))$

TPM Features: Keys

o Endorsement Key (EK)

o uniquely identifies a TPM (manufacturer may provide certificate for EK)

Attestation Identity Key (AIK)

o created by TPM, certified by CA, primarily used to sign subset of PCRs

Storage keys

o used to encrypt data outside TPM (e.g., other keys of TPM)

o Storage Root Key (RTS)

- o uniquely created inside TPM, private part in TPM
- o used to encrypt all other keys created by the TPM

Migratable and non-migratable keys

o Certified-migratable keys

o decide to delegate migration upon creation of keys

Integrity Measurement

Chain of Trust and Measurements

o Chain of Trust

o Chain measurement

- o To trust the chain the identity of each member is needed
- o Identity = measurement according to TCG definition
- Generic flow: Each member measures its successor before passing the control to it

o Root of Trust

- o Must be trusted, no mechanism to measure it
- o For creating chain of trust the first entity is RTM

Measurements

o **Measurements**

- 1. RTM measures entity B
- 2. RTM creates Event Structure in SML (Stored Measurement Log)
 - o SML contains the Event Structures for all measurements in the TPM
 - o SML can be stored on any storage media, e.g., storage device
- o 3.RTM
- o RTM extends value into PCR

o Event Structure

- o Contains extend value (actual result of digest) and extend data
- o One structure for each measurement extended into the TPM

Bootstrap and Integrity Measurement

o Instantiation based on TCG approach

o Core Root of Trust for Measurement (CRTM)

o Trusted Platform Module (TPM)

Integrity Measurement: More Details

Attestation

TCG Attestation (simplified)

Attestation Identity Key (AIK): Overview

- o Provides a signature key that can act a pseudonym
- o Theoretically a TPM can have unlimited number of AIK (different key for each transaction)
- o Certification Authority
 - Requires certification by a Trusted Third Party (Privacy-CA in TCG Terminology) certifying that an AIK comes from a TPM
 - o Unlinkability achieved by DAA (Direct Anonymous Attestation) Protocols [BrCaCh2004]
 - o No privacy-CA needed
 - o A zero-knowledge proof of knowledge of possession of a valid certificate

Security Architectures Based on Virtualization

Some Terms

o Compartment

o A process logically isolated from other processes

o Configuration

- o I/O behavior of a state machine based on an initial state
 - o e.g., represented by the hash value of the binary code

oTrusted Channel

- A secure channel verifying expected configuration of an endpoint compartment
 - o e.g., verify hash of the compartment against a reference value

Proposed Architecture

Virtualization Layer

- o Provides an abstraction of underlying hardware
 - o e.g., CPU, devices, interrupts
- o Offers management primitives
- o Access control polices for resources
- o Examples
 - o Based on microkernels (L4 family) [Liedke1996]
 - o Based on hypervisors (Xen) [Barham et al 2003]

Virtualization Layer

IPC, Hardware Sharing, Memory Management, Scheduling, ...

Trusted Software Layer

- o Provides elementary security properties
 - o Trusted channels
 - o Strong compartment isolation
- o Main services
 - o Trust Manager
 - o Compartment Manager
 - o Storage Manager
 - o Secure GUI

Trusted Software Layer Services

o Compartment Manager

Manages creation, updates, and deletion of compartments

o Storage Manager

- o Provide persistent storage while preserving integrity, confidentiality, freshness, ...
- o Has access to configuration of clients it is communicating to over trusted channel

o Attestation Manager

 Determines/Attests the properties of local and remote compartments

Application Layer

- Efficient migration of legacy software possible
- Isolation between applications of legacy services can be achieved by parallel instances of legacy OS

Job Migration in Data Center/Grid

- o Establish trusted channel to destination node
- o Transfer image and vTPM
 - o vTPM state must not be subject to modification, duplication or comprise
- o Update state of storage manager

Selected TC related Research Activities/Projects

Overview

- Trusted Virtual Domains
 - o Partly supported by METI Japan
 - o www.trl.ibm.com/projects/tvd/
- o Open Trusted Computing (OpenTC)
 - o Funded by European Union
 - o www.opentc.net
- o European Multilaterally Secure Computing Base
 - o Partly funded by the German Government
 - o www.emscb.org
- Trusted Mobile Computing (TRUCOM)
 - o Partly funded by the German Government
- Trusted Embedded Computing (TECOM)
 - o European Project
 - o In evaluation phase

Open Trusted Computing

- o Building on the cost-efficient widely deployed TPM and the new generation of x86 CPUs from Intel and AMD ([LaGrande2003], [Pacifica2005])
- o Define and implement an open Trusted Computing framework
 - o across different platform and OS types
 - o Distribution as Open Source software, supporting Linux in particular
- Consensus driven introduction of a transparent Trusted Computing framework and solutions
- o Providing choice between proprietary and non-proprietary solutions for Trusted Computing
- o Wide distribution by SUSE
- o Collaborative, academic/industrial research project co-funded by the European commission
- o 23 Partners
 - o Academic: Bochum University (security architecture), Cambridge University (XEN), Dresden University (L4 microkernel)
 - Industrial: AMD, HP, Infineon, IBM, SuSE/Novell

OpenTC Use Cases

o Personal Electronic Transaction

- Based on idea of colored computing (red for untrusted and green for trusted)
- o Trusted Virtual Machine
- Initialization via Trusted GUI
- o Planed Demo November 2006

o Cooperate computing at home

- o Home PC
- o Virtual cooperate PC (CPC)
- Trusted computing to enable corporation to trust CPC

Virtual data center

- Virtual customer infrastructure
- Deployed on a smaller number of physical machines

EMSCB-Project

- o European Multilaterally-Secure Computing Platform [SaStPo2004]
- Develop an open multilaterally-secure computing platform that is secure enough to allow new and innovative business models
- o Based on
 - o PERSEUS/Nizza ([Pfitzmann et al 2001] / [Haertig et al 2005])
 - o L4 (Microkernel)
- o 7 Partners from academia and industry
 - o Academic: Bochum University (Security Architecture), Dresden University (L4 microkernel), Institute for Internet Security (Gelsenkirchen)
 - o Industrial: Bosch/Blaupunkt, escrypt, Infineon, Sirrix, SAP

EMSCB Use Cases

- o HDD-Encrypter (Prototype available)
 - o Secure Booting
 - o Isolated encryption keys
 - o See also [Alkassar et al 2006]
- o Secure VPN Module (Prototype available)
 - o Isolated Certificates
 - o Application Attestation
 - o See also [Alkassar et al 2006]
- o Fair DRM Prototype (End of 2006)
 - o Protection of digital content
 - o Enforcement of pragmatic security policies
- o Enterprise Rights Management (End of 2007)
 - o Isolation of Linux compartments
 - o Enforcement of different security policies
- o Embedded DRM Viewer (End of 2007)
 - o Navigation System in cars

Trusted Virtual Domains

- Simplifying management and providing explicit infrastructure-level [Bussani et al 2005]
 - Containment: Isolation of the computing entities used to perform a service regardless of the physical machine or network topology configuration of those entities (domains)
 - o and trust guarantees by conveying integrity verification each entity within the domain
- Use case: System management in strategic outsourcing (Data Centers processing data of different customers)
- o Project: IBM Tokyo and METI

Reactions to Trusted Computing Group Approach

Concerns

- Since its announcement, TCG has been subject to much criticism
 - o Potential basis for DRM
 - o Less freedom (including freedom of choice and user control)
 - o Privacy violation (disclosing platform identity and configuration)
 - o Confusing language: Trust, Control, Opt-in
 - o Core specifications unreadable (leads to misunderstanding)
- o Much of the criticism is related to Microsoft's NGSCB
 - o Several name changes from Palladium to NGSCB, Longhorn to Vista [Microsoft2003a, Microsoft2003b, Microsoft2003c, Vista2006]
 - o Bad publicity or legal challenges on rights to the name (see, e.g., [Lemo2003, Bech2003])
- o Danger of restricting competition
 - o Misuse of sealed storage capabilities to prevent other applications from accessing data, thus locking out alternative applications and inhibiting interoperation [Scho2003], [Ande2002, Ande2003, Cour2002]

Legal Requirements on TC/TCG

- o German Government requirements catalogue on TCG
- o Electronic Frontier Foundation (EFF) [Scho2003]
- o European Commission Article 29 (Data Protection Working Party) [EC2004]
- o Main common requests:
 - o User's privacy
 - o Assurance: no back doors
 - o No collection of user profiles
 - o Unrestricted user control (e.g., over keys and IT technology)
 - o Transparency of certification
 - o Option for transferring secrets between different machines
 - o Functional separation of TPM and CPU / chipsets
 - o Product discrimination
- o New Zealand Government's initiative [NZG2006]
 - o Defines principles and policies for TC/DRM composed system to ensure that the use of TC/DRM technologies does not adversely affect the integrity, availability and confidentiality of governmentheld information or related government systems

TC and Open Source

- o Customer concerns
 - o "Will TC be supported for Open Source based solutions?"
 - o OSS systems frequently used in security critical environments
 - o Strict requirements (audit, compliance, 'state of the art' mechanisms)
 - o Main reason: transparency, vendor-independence
 - o Important market segment of institutional and professional users
 - o Government, public administration, financial, insurance, aerospace
- o Concerns from parts of the OSS spectrum, typical reactions
 - o TC may put OSS at a disadvantage
 - o TC may lead to customer lock-in
 - o No alternative to using a particular piece of software
 - o TC could be "philosophically incompatible" with OSS
 - o 'Treacherous Computing' (Stallman) has become issue for GPLv3 [GPLv3]
 - o Highly controversial debate: Stallman vs. Torvalds
 - o As of Sep. 2006: Stallman vs. Linux kernel developer community
 - o Might lead to deep split in OSS communities & licensing models

Some Technical Challenges

Overview

o In this talk

- o TPM complexity, compliance and security
- o Attesting properties instead of integrity
- o Efficient maintenance
- o Malicious virtualization
- o Widespread commercial applications

o Others

- o Computing platforms with dynamic HW Configuration
- o PKI problems
- o Formal models & methods

TPM Functionality and Complexity

Specification very complex & complicated

- o Many commands (123) with many parameters (3 to 19)
- o Which functionalities (and commands) are really needed?

o TPM Compliance and Security Test

- o Recent tests show *majority* of TPMs are not compliant with specification [Sadeghi et al 2006]
 - o Need new and efficient test strategies and concepts
- o Some TPMs vulnerable to attacks due to weak implementations
 - o e.g., dictionary attack, accessing keys without valid SRK authorization) [Sadeghi et al 2006]
- o In particular necessary from users' perspectives

o TPM Emulation

o Based on existing functionalities (e.g., secure storage)

o Integration of TPM into CPU or chipset

- o Engineering trade off between security and technical evaluation
- TPM Construction Kit
- Towards more security against hardware attacks (see also [KuScPr2005])

TPM Functionality and Complexity: Command Structure and Relation

Conceptual Problems of Attestation / Sealing I

Discrimination

- Sealing/attestation has the potential to exclude alternative software products systems (e.g., Linux)
- Sealing allows content providers to enforce usage of a specific platform configuration
- Application vendors can exclude alternative software

Observable

 Verifier can obtain information about remote platform configuration

Conceptual Problems of Attestation/Sealing II

o Inflexible

- System update: Sealed data is inaccessible after updating measured system components (e.g., patching TCB)
- Might affect: cryptographic keys for accessing networks, documents, media files, etc

Complexity and management

- Vast number of different platform configurations
 - (constantly growing through patches, compiler options and software versions)
- This makes it hard to keep track
 - o "evolution of trustworthiness" of a given configuration

Property-Based Attestation (PBA)

- o Verifier usually interested in whether the attested object provides the desired properties instead of specific configuration [SaSt2004]
- o Property (informally)
 - o describes an aspect of the behaviour of the underlying object with respect to certain requirements (e.g., a security-related)
- o Properties on different abstraction levels
 - o privacy-preserving, i.e., it has built-in measures conform to the privacy laws
 - o provides Multi-Level Security (MLS)
 - o security evaluated by a governmental organisation
- o The choice of correct or useful property set and its correct definition depends strongly on the underlying use case and its requirements

PBA: Possible Approaches

o Code control

- o Property attestor is trusted to enforce that a machine can only behave as expected.
 - o In a machine model this means that attestor compares the I/O behavior of M with that defined by the desired property P
 - o Example: reference monitor and to attest both OS and the enforced security policy (e.g., [MaSmBaSt2004] for SE Linux [LoSm2001])

o Code analysis

- o property attestor directly analyses the code of the machine to derive properties
- o Exp.: proof-carrying code and semantic code analysis ([Necu2002], [HaChFr2003])

o **Delegation**

- o property attestor proves that another party has certified the presence of the desired properties [SaSt2004, Chen et al 2006]
 - o Obviously, this third party has to be trusted by both

Sealed Data & Hardware Migration

- o TPM maintenance procedure [TPM2005]
 - o Process is optional
 - o No information on whether mechanism is implemented in any existing TPM
 - o Works only for TPMs of same vendor
 - o Needs interaction with vendor
 - o Vendor out of business?
 - o Price?
- o Efficient recovering of sealed data when HW breaks?

Platform Updates

- o Requirements for a patched TCB
 - o Security: Remote party wants that new platform configuration that adheres to the existing security policy.
 - o Availability: Owner/User wants protected information to be accessible before and after patch.
- o Solution proposals [KuKoSaSt2005]
 - o Software-supported
 - o TPM-supported
 - o Property-based sealing

Migration

- o Requirements for TPM migration
 - Completeness: Platform owners should be able to securely transfer complete TPM state
 - o Security:
 - o Migration only if destination TPM at least as secure as source TPM
 - o The state of the source TPM should be cleared afterwards
 - o Confidentiality of TPM data
 - o Delegate decision to trusted third party
 - o Fairness: openly specified process
 - o No need for interaction with vendor
- o Solution proposal [KuKoSaSt2005]
 - o A migration protocol with above properties

Virtualization Attacks

- o Virtual-machine based rootkits
 - o Compromise computing platforms
 - o e.g., Blue Pill [Rutk2006], [Ligu2006], [Ou2006] and SubVirt [King et al]
 - o Malicious virtual machine monitors have full access to the internal state of Virtual Machines (VM), thus to all secrets
 - o Virtualized operating system cannot always detect the existence of malicious VMM
- o Solutions must guarantee anti discrimination
- o Solution proposal
 - o Trusted Computing can help to prevent virtualization attacks
 - o e.g., using property based-attestation [SaSt2004]
 - o but, is it essential?
 - Efficient and flexible solutions needed

Secure Multiparty Computation

- o Protocols will be more efficient bounds will not change (see, e.g., [BeDoFe2006])
- Note that a TPM has limited functionality and resources

Summary and Conclusion

o Trusted Computing is an emerging technology

- o Still needs many improvements
- o It is not restricted to the TPM technology (although competition on market segments already started)
- o Possible deriving/pushing technology for secure operating systems?
- o Europe plays an important role (TPM manufacturing, research in TC)

o Careful deployment of TC

- o Protect end-user rights
- o Provide the right environment
 - No discrimination and space for innovation (small and mid-sized enterprises)
- o Understanding TC and having impact

Long term solutions require international and joint efforts

- o Academia, governments and industry
- o Establishing reasonable standards
- Not to forget our purpose (more security for IT Systems) and not only extending them with functionalities

References

- [Alkassar et al 2006] Ammar Alkassar, Michael Scheibel, Ahmad-Reza Sadeghi, Christian Stüble, Marcel Winandy: Security Architecture for Device Encryption and VPN. Accepted for ISSE (Information Security Solution Europe) 2006.
- [Ande2001] Ross Anderson: Security Engineering: A Guide to Building Dependable Distributed Systems. Wiley (2001), ISBN 0-471-38922-6, 2001.
- [Ande2002] Ross Anderson: Cryptography and Competition Policy Issues with 'Trusted Computing'. Technical report, Cambridge University, 2002.
- [Ande2003] Ross Anderson: 'Trusted Computing' Frequently Asked Questions: TC/TCG/LaGrande/NGSCB/Longhorn/Palladium/TCPA. Available at http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html, 2006.
- [ArFaSm1997] William A. Arbaugh, David J. Farber and Jonathan M. Smith: A secure and reliable bootstrap architecture. In Proceedings of the IEEE Symposium on Research in Security and Privacy, pages 65-71, Oakland, CA, May 1997. IEEE Computer Society, Technical Committee on Security and Privacy, IEEE Computer Society Press.
- [AvLaLaRa2004] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr: Taxonomy of Dependable and Secure Computing. IEEE Transactions on Dependable and Secure Computing, Volume 1, Issue 1, pp 11-33 IEEE, 2004.
- [Barham et al 2003] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt and Adrew Warfield: Xen and the art of virtualization. In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP'03), Bolton Landing, NY, USA, October 2003.
- [Bech2003] S. Bechtold: The Present and Future of Digital Rights Management Musings on Emerging Legal Problems. Digital Rights Management, LNCS 2770:597-654, 2003.
- [BeDoFe2006] Zinaida Benenson, Milan Fort, Felix C. Freiling, Dogan Kesdogan, Lucia Draque Penso: TrustedPals: Secure Multiparty Computation Implemented with Smart Cards. 11th European Symposium on Research in Computer Security (ESORICS 2006), September 2006, Hamburg, Germany.
- [BrCaCh2004] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In Proceedings of the 11th ACM Conference on Computer and Communications Security, Washington, DC, USA, October 2004. ACM Press.
- [Bussani et al 2005] A. Bussani, J.L. Griffin, B.Jansen, K. Julisch, G. Karjoth, H. Maruyama, M. Nakamura, R. Perez, M. Schunter, A. Tanner, L. Van Doorn, E.A. Van Herreweghen, M. Waidner, S. Yoshihama: Trusted Virtual Domains: Secure Foundations for Business and IT Services. Whitepaper, RC23792, November 9, 2005.
- [Chen et al 2006] Liqun Chen, Rainer Landfermann, Hans Loehr, Markus Rohe, Ahmad-Reza Sadeghi and Christian Stüble: A Protocol for Property-Based Attestation. Accepted for The First ACM Workshop on Scalable Trusted Computing (STC'06).
- [Cole1990] James Coleman: Foundations of Social Theory, Harvard Edition World, 1990
- [Cour2002] D. Coursey: Why we can't trust Microsoft's 'trustworthy' OS. ZDNet, available at http://www.zdnet.com.au/newstech/os/story/0,2000048630,20266389,00.htm, 2002.
- [EC2004] European Commission Article 29 (Data Protection Working Party), http://ec.europa.eu/justice_home/fsj/privacy/workinggroup/.
- [GPLv3] GNU General Public License, Version 3. Available at http://gplv3.fsf.org/.

- [HaChFr2003] V. Haldar, D. Chandra and M. Franz: Semantic remote attestation: A virtual machine directed approach to trusted computing. In USENIX Virtual Machine Research and Technology Symposium, May 2004. Also TechnicalReport No. 03-20, School of Information and Computer Science, University of California, Irvine, October 2003.
- [Haertig et al 2005] Härtig, Hohmuth, Feske, Helmuth, Lackorzynski, Mehnert and Peter: The Nizza Secure-System Architecture. 12/2005 CollaborateCom 2005.
- [Itoi et al 2001] Naomaru Itoi, William A. Arbaugh, Samuela J. Pollack and Daniel M. Reeves: Information Security and Privacy. 6th Australasian Conference, ACISP 2001, Sydney, Australia, July 11-13, 2001, Proceedings.
- [King et al] Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang, and Jacob R. Lorch: SubVirt: Implementing malware with virtual machines. Conditionally accepted pending shepherd approval to the 2006 IEEE Symposium on Security and Privacy, May 2006.
- [KuGe2003] Dirk Kuhlmann, Robert A. Gehring: Trusted Platforms, DRM, and Beyond. In: Eberhard Becker, Willms Buhse, Dirk Günnewig / Niels Rump (Hrsg.): Digital Rights Management: Technological, Economic, Legal and Political Aspects, Springer, Berlin, Heidelberg, New York 2003, S. 178-205.
- [Kuhl2003] Dirk Kuhlmann: On TCPA. FC 2003, LNCS 2742, pp. 255-269, 2003.
- [KuKoSaSt2005] Ulrich Kühn, Klaus Kursawe, Stefan Lucks, Ahmad-Reza Sadeghi, and Christian Stüble: Secure data management in trusted computing. In Cryptographic Hardware and Embedded Systems — CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages 324–338. Springer-Verlag, Berlin Germany, 2005.
- [KuScPr2005] K. Kursawe, D. Schellekens, and B. Preneel: Analyzing trusted platform communication. In ECRYPT Workshop, CRASH - Cryptographic Advances in Secure Hardware, 8 pages, 2005.
- [LaGrande 2003] Intel Corporation: LaGrande technology architectural overview. Technical Report 252491-001, Intel Corporation, September 2003.
- [Lemo2003] R. Lemos: What's in a name? Not Palladium. C-Net News, available at http://news.com.com/2100-1001-982127.html, 2003.
- [Liedke1996] J. Liedke: Towards real micro-kernels. Communications of the ACM, 39(9), 1996.
- [Ligu2006] Anthony Liguori: Debunking blue pill myth. Available at http://www.virtualization.info/2006/08/debunking-bluepill-myth.html, August 2006.
- [LoRaSaScSt2006] Hans Löhr, Hari Govind V. Ramasamy, Stefan Schulz, Matthias Schunter, Christian Stüble: Enhancing Grid Security Using Trusted Virtualization. Accepted to be presented at The Second Workshop on Advances in Trusted Computing (WATC '06 Fall).
- [LoSm2001] Peter Loscocco and Stephen Smalley: Integrating flexible support for security policies into the Linux operating system. Technical report, U.S. National Security Agency (NSA), February 2001.
- [Luhm1979] Niklas Luhmann: Trust as a Reduction of Complexity. In: Trust and Power: Two Works of Niklas Luhmann, New York: John Wiley and Sons, 1979, pp. 24-31.
- [MaJiMa2006] W. Mao, H. Jin, and A. Martin: Innovations for grid security from trusted computing. Made available online at http://www.hpl.hp.com/personal/Wenbo_Mao/research/tcgridsec.pdf, 2006.
- [MaSmBaSt2004] J. Marchesini, S. Smith, O. Wild, A. Barsamian, and J. Stabiner: Open source applications of TCPA hardware. In 20th Annual Computer Security Applications Conference. ACM, Dec. 2004.
- [Microsoft2003a] Microsoft: NGSCB Technical FAQ. Available at http://www.microsoft.com/technet/security/news/ngscb.mspx.

- [Microsoft2003b] Microsoft: Next Generation Secure Computing Base. Available at http://www.microsoft.com/resources/ngscb/default.mspx.
- [Microsoft2003c] Microsoft: Next-Generation Secure Computing Base Product Information. Available at http://www.microsoft.com/resources/ngscb/productinfo.mspx.
- [Necu2002] G. Necula: Proof-carrying code. In 24th Symposium on Principles of Pro-gramming Languages (POPL), pages 106-119, Paris, France, Jan. 1997, ACM Press.
- [NZG2006] The New Zealand Government State Service Commission, http://www.e.govt.nz/policy/tc-and-drm.
- [Ou2006] George Ou: Detecting the blue pill hypervisor rootkit is possible but not trivial. Available at http://blogs.zdnet.com/Ou/?p=297, August 2006.
- [Pacifica2005] Advanced Micro Devices, Inc: AMD64 Virtualization Codenamed 'Pacifica' Technology. 33047-rev. 3.01 edition, May 2005.
- [Pfitzmann et al 2001] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner, A. Weber: The PERSEUS System Architecture. IBM Technical Report RZ 3335 (#93381), IBM Research Division, Zurich Laboratory, 2001.
- [Rann1994] Kai Rannenberg: Recent Development in Information Technology Security Evaluation The Need for Evaluation Criteria for multilateral Security. In Richard Sizer et al.: Security and Control of Information Technology in Society Proceedings of the IFIP TC9/WG 9.6 Working Conference August 12-17, 1993, pp. 113-128, onboard M/S Ilich and ashore at St. Petersburg, Russia; IFIP Transactions A-43; North-Holland, Amsterdam et al. 1994; ISBN 0-444-81831-6.
- [RoSiBuCa98] D. M. Rousseau, S. B. Sitkin, R. S. Burt and C. Camerer: Not So Different After All: A Cross-Discipline View of Trust. The Academy of Management Review. Vol. 23, Num. 3, pp. 393-404, 1998.
- [Rutk2006] Joanna Rutkowska: Subverting vista kernel for fun and profit. Available at http://blackhat.com/presentations/bh-usa-06/BHUS-06-Rutkowska.pdf, July 2006.
- [Sadeghi et al 2006] Ahmad-Reza Sadeghi, Marcel Selhorst, Christian Stüble, Christian Wachsmann and Marcel Winandy: TCG Inside? A Note on TPM Specification Compliance. Accepted for The First ACM Workshop on Scalable Trusted Computing (STC'06).
- [Sailer et al 2005] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, J. L. Griffin, S. Berger: sHype: Secure Hypervisor Approach to Trusted Virtualized Systems. IBM research report Research Report RC23511, 2005.
- [SaSt2004] Ahmad-Reza Sadeghi, Christian Stüble: Property-based Attestation for Computing Platforms: Caring about policies, not mechanisms. Panel on Themes and Highlights of the New Security Paradigms Workshop 2004, presented at 20th Annual Computer Security Applications Conference (ACSAC) December, 2004.
- [SaStPo2004] Ahmad-Reza Sadeghi, Christian Stüble, Norbert Pohlmann: European Multilateral Secure Computing Base Open Trusted Computing for You and Me. Datenschutz und Datensicherheit (DUD) 9/2004, Vieweg Verlag, pp. 548-554, 2004.
- [Scho2003] S. Schoen: Trusted Computing: Promise and Risk. Technical report, Electronic Frontiers Foundation, available at http://www.eff.org/Infra/trustedcomputing/20031001tc.php.
- [Shap1999] Jonathan S. Shapiro: EROS: A Capability System. PhD thesis, University of Pennsylvania, April 1999.
- [TCG] Trusted Computing Group Website available at www.tcg.org.
- [tGRUB2005] Trusted GRUB Project Homepage available at http://www.prosec.rub.de/trusted_grub.html.

- [TPM2002] Trusted Computing Platform Alliance (TCPA): TCG Main Specification Version 1.1b. February 2002.
- [TPM2003] Trusted Computing Group: TCG TPM Specification Version 1.2 Revision 85. February 2005.
- [TPMMatrix2006] Available online at http://www.tonymcfadden.net/tpmvendors.htm
- [TrouSerS] TrouSerS: An open-source TCG Software Stack implementation. Available at http://trousers.sf.net.
- [TrustedMach1991] Kernel Primer: Trusted Information Systems Inc., Draft 01, November 27, 1991.
- [Vista2006] Microsoft Windows Vista Product Homepage available at http://www.microsoft.com/windowsvista/.