Short Memory Method on Koblitz Curves

Katsuyuki Okeya
Tsuyoshi Takagi
Camille Vuillaume
Outline

Elliptic curves
- Interest of ECC
- Binary Method
- NAF Method

Koblitz curves
- Binary Curves
- τ Expansions
- Binary vs. Koblitz

Short Memory
- Normal vs. Polynomial Basis
- Short Memory on Normal Basis
- Short Memory on Polynomial Basis
Outline

Elliptic curves

- Interest of ECC
- Binary Method
- NAF Method

Koblitz curves

Short Memory
RSA vs. Elliptic Curves

Speed
ECC are 30 times faster than RSA...

Memory
…and require 6.5 less memory
Binary Method

Operations:

Scalar: \(d = 105 = (1 0 1 0 1 0) \)

Input: \(P \)

Output: \(105P \)

On average: \((n-1)D + n/2A\)
NAF_w Method

Scalar: \(d=105=(1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1)_2 \)

NAF_w recoding, \(w=3 \)

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & -3 & 0 & 0 & 1 \\
\end{array}
\]

Input:

Output: 105P

Operations:

On average: \(nD + \frac{n}{(w+1)}A + (2^{w-2}-1)A \)
Comparison – NAFw Method

Optimal width $w=5$

How to get rid of point doublings?

Maximal speed-up: less than 20% 😞
Binary Curves

- **Koblitz Curves**
 - $y^2 + xy = x^3 + ax + 1, \ a = \{0, 1\}$

- **Binary Curves**
 - $y^2 = x^3 + ax^2 + b, \ a, b \in F_{2^m}$

- Coprocessor-less architecture
 - Lower production cost, cheaper design 😊

- Can use AES acceleration hardware
 - Re-use existing design 😊

- Slow without AES hardware or fast processor
 - With coprocessor, prime curves are faster 😞

- Well-suited for mobile phone CPU (32-bit RISC)
 - Faster than general binary curves 😊😊
Binary and τ-Expansions

Binary curves

$P = (x,y) \rightarrow 2P = (x',y')$

$\begin{array}{c}
P \\
2P \\
4P \\
8P \\
P
\end{array}$

$\begin{array}{c}
\tau \ P \\
\tau \ P + P \\
\tau \ P + 2P \\
\tau \ P + 3P \\
\tau \ P + 4P \\
\tau \ P + 5P \\
\tau \ P + 6P \\
\tau \ P + 7P \\
\tau \ P + 8P \\
\tau \ P + 9P \\
\end{array}$

$\begin{array}{c}
P \\
\tau \ P \\
\tau \ P + P \\
\tau \ P + 3P \\
\tau \ P + 5P \\
\tau \ P + 7P \\
\tau \ P + 9P \\
\end{array}$

$d = 9 = (1001_2)$

$\tau \text{-and-add: no point doubling}$

Koblitzz curves

$P = (x,y) \rightarrow 2P = (x',y')$

$\begin{array}{c}
P \\
\tau \ P \\
\tau \ P + \ P \\
\tau \ P + 2\ P \\
\tau \ P + 3\ P \\
\tau \ P + 4\ P \\
\tau \ P + 5\ P \\
\tau \ P + 6\ P \\
\end{array}$

$\begin{array}{c}
\tau \ P \\
\tau \ P + \ P \\
\tau \ P + 3\ P \\
\tau \ P + 5\ P \\
\tau \ P + 7\ P \\
\tau \ P + 9\ P \\
\end{array}$

$\begin{array}{c}
P \\
\tau \ P \\
\tau \ P + P \\
\tau \ P + \tau \ P \\
\tau \ P + 3P \\
\tau \ P + 5P \\
\tau \ P + 7P \\
\tau \ P + 9P \\
\end{array}$

$\begin{array}{c}
\tau = (1 + \sqrt{-1})/7 \\
\tau^2 = -1 \\
1*\tau^0 \\
1*\tau^1 \\
1*\tau^2 \\
1*\tau^3 \\
1*\tau^4 \\
1*\tau^5 \\
1*\tau^6 \\
\end{array}$

$\begin{array}{c}
d = 9 = (11111001_\tau) \\
1*\tau^0 \\
1*\tau^1 \\
1*\tau^2 \\
1*\tau^3 \\
1*\tau^4 \\
1*\tau^5 \\
1*\tau^6 \\
1*\tau^7 \\
\end{array}$

10x faster

$2P = -\tau^2 \ P + \mu \ P$

$\tau = (1 + \sqrt{-1})/7$
Binary vs. Koblitz Curves

163-bit Scalar Multiplication

- **Binary curves**
 - w=5 optimal...
 - but requires a lot of memory

- **Koblitz curves**
Outline

Short Memory Method on Koblitz Curves

Elliptic curves

Koblitz curves

Short Memory

Normal vs. Polynomial Basis

Short Memory on Normal Basis

Short Memory with Mixed Bases
Normal vs. Polynomial Basis

<table>
<thead>
<tr>
<th>Polynomial Basis</th>
<th>Normal Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = p_{m-1}X^{m-1} + \ldots + p_1X + p_0$, where $p_i \in {0, 1}$</td>
<td>$b = b_0\beta_0 + b_1\beta_1 + \ldots + b_{m-1}\beta_{m-1}$, where $\beta_i^2 = \beta_{i+1}$ and $\beta_{m-1}^2 = \beta_0$</td>
</tr>
</tbody>
</table>

- Fast reduction with trinomials or pentanomials
- Fast multiplications
- No reduction
- Software
- Hardware

Fast squares

- $b = b_0\beta_0 + b_1\beta_1 + \ldots + b_{m-2}\beta_{m-2} + b_{m-1}\beta_{m-1}$
- $b^2 = b_0\beta_0^2 + b_1\beta_1^2 + \ldots + b_{m-2}\beta_{m-2}^2 + b_{m-1}\beta_{m-1}^2$
- $= b_{m-1}\beta_0 + b_0\beta_1 + b_1\beta_2 + \ldots + b_{m-2}\beta_{m-1}$

Interesting for Koblitz curves (τ)

Mixed approach?
Short Memory - Normal Basis

Standard method

\[
\begin{array}{cccccccc}
-1 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 1 \\
\end{array}
\]

\[
P
\]

\[
3P
\]

\[
\tau
\]

Short memory

\[
\begin{array}{cccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 1 \\
\end{array}
\]

\[
\tau^8P
\]

\[
\tau^8
\]

\[
\tau^8P+P
\]

\[
P
\]

\[
3\tau^3P
\]

\[
\tau^3
\]

\[
9P
\]

\[
-\tau^8P+P
\]

\[
3P
\]
Sequential Precomputations

Short Memory Method on Koblitz Curves

<table>
<thead>
<tr>
<th>u</th>
<th>$\alpha_u = u \mod \tau^5$</th>
<th>Binary representation of α_u</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>$\tau - 3$</td>
<td>$\tau - 1$</td>
</tr>
<tr>
<td>5</td>
<td>$\tau - 1$</td>
<td>$\tau + 1$</td>
</tr>
<tr>
<td>7</td>
<td>$\tau + 1$</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>$2\tau - 3$</td>
<td>$-\tau - 1$</td>
</tr>
<tr>
<td>11</td>
<td>$2\tau - 1$</td>
<td>$2\tau + 1$</td>
</tr>
<tr>
<td>13</td>
<td>$2\tau + 1$</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$-3\tau + 1$</td>
<td></td>
</tr>
</tbody>
</table>

Precomputations

- $\alpha_4 P = P$
- $\alpha_5 P = tP - P$
- $\alpha_6 P = \tau P + P$
- $\alpha_{13} P = -2 \alpha_5 P + P$
- $\alpha_{11} P = -\tau^3 P + \alpha_3 P$
- $\alpha_7 P = \tau P + P$
- $\alpha_{15} P = \alpha_{11} P - \tau P$
- $\alpha_9 P = -\tau^4 P - \alpha_7 P$
Performance, Hardware

Short Memory Method on Koblitz Curves

163-bit binary curve
163-bit Koblitz curve
163-bit normal basis

Cost (elliptic operations)

Memory (bits)

Performance, Hardware

163-bit Koblitz curve

163-bit binary curve

Cost (elliptic operations)

Memory (bits)

Performance, Hardware

Short Memory Method on Koblitz Curves
Short Memory - Mixed Bases

- Short Memory Method on Koblitz Curves

\[
\begin{array}{cccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 1 \\
\end{array}
\]

\[
\tau^8P \quad \tau^8P \\
\tau^8P \quad \tau^8P \\
\tau^3P \quad \tau^3P \\
\tau^3P \quad \tau^3P \\
\end{array}
\]

\[
\begin{array}{cccccccc}
P & P & P & P & P & P & P & P \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{polynomial basis} & \text{normal basis} \\
\end{array}
\]

\[
u=1, u=3
\]
Change of Basis

Original representation:

1
1
0
1
1
0
1
1

New representation:

Change of basis matrix:

0 1 0 0 0 1
⊕
1 1 0 1 0 0
⊕
1 1 0 0 1 1
⊕
0 0 1 1 0 0
⊕
0 1 0 1 0 1
⊕
1 1 1 1 1 0 0
⊕

Cyclic shift not explicitly computed
Performance, Software

Short Memory Method on Koblitz Curves

163-bit binary curve

163-bit Koblitz curve

163-bit polynomial basis

Memory (bytes)

Cost (multiplications)

0 50 100 150 200 250 300 350

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

0 42 84 126 168 210 252 294

0 200 400 600 800 1000 1200 1400

Memory (bytes) -- Cost (M)

☺☺
Extensions, open problems

- Side channel & fault attacks
- Change of basis
- Other curves
Recap

"Le beurre et l’argent du beurre"
Questions & Comments