
Hardware Acceleration of the Tate Pairing in
Characteristic Three

Philipp Grabher (Graz) and Dan Page (Bristol)

CHES 2005

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 1



Introduction

I Pairing based cryptography is a (fairly) new area:
I Has provided new instantiations of Identity Based Encryption.
I Has provided a wealth of new “hard problems” and proof

techniques.
I Has opened a new area for those interested in implementation.

I So far, most implementations have been done in software; our
main aims before we started were:

I Compare hardware polynomial and normal basis arithmetic in
the finite fields F397 and F389 respectivley.

I Ideally we wanted same field size but curve selection and FPGA
size bit us.

I Evaluate the size and performance of a flexible pairing
accelerator for use in constrained environments.

I Ignore the fact that η-pairings, MNT curves and Fp arithmetic
might be a more modern and better way to go :-)

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 2



Pairing Based Cryptography (1)

I For our purposes, the pairing is just a map between groups:

e : G1 ×G1 → G2

where we usually set G1 = E(Fq) and G2 = Fqk .
I The main interesting property of the map is termed bilinearity:

e(a · P, b ·Q) = e(P, Q)a·b

which means we can play about with the exponents at will.
I To work in a useful way, the map also needs to be:

I Non-degenerate, i.e. not all e(P, Q) = 1.
I Computable, i.e. we can evaluate e(P, Q) easily.

I In real applications we generally use the Tate or Weil pairing.

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 4



Pairing Based Cryptography (2)

I Such pairings were originally thought to only be useful in a
destructive setting.

I Boneh-Franklin identity based encryption is perhaps the most
interesting constructive use:

I The trust authority or TA has a public key PTA = s · P for a public
value P and secret value s.

I A users public key is calculated from the string ID using a hash
function as PID = H1(ID).

I A users secret key is calculated by the TA as SID = s · PID.

I To encrypt M, select a random r and compute the tuple:

C = (r · P, M ⊕ H2(e(PID, PTA)r )).

I To decrypt C = (U, V ), we compute the result:

M = V ⊕ H2(e(SID, U)).

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 6



Pairing Based Cryptography (3)

I We are interested in the case where q = 3m and k = 6 since
this is attractive from a parameterisation perspective.

I Along with the standard Miller-style BKLS algorithm, there are
two closed-form algorithms in this case.

I Both compute e(P, Q) with P = (x1, y1) and Q = (x2, y2).

The Duursma-Lee Algorithm

f ← 1
for i = 1 upto m do

x1 ← x3
1

y1 ← y3
1

µ← x1 + x2 + b
λ← −y1y2σ − µ2

g ← λ− µρ− ρ2

f ← f · g

x2 ← x1/3
2

y2 ← y1/3
2

return f q3−1

The Kwon-BGOS Algorithm

f ← 1
x2 ← x3

2
y2 ← y3

2
d ← mb
for i = 1 upto m do

x1 ← x9
1

y1 ← y9
1

µ← x1 + x2 + d
λ← y1y2σ − µ2

g ← λ− µρ− ρ2

f ← f 3 · g
y2 ← −y2
d ← d − b

return f q3−1

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 8



Hardware Implementation (1)
I We need quite a few different operations:

I E(Fq): Addition, Tripling, Scalar Multiplication.
I Fq : Addition, Multiplication, Inversion, Cube, Cube Root.
I Fqk : Addition, Multiplication, Inversion, Cube.

I Everything depends on high-performance Fq arithmetic.
I We approach is to implement only Fq arithmetic in hardware.
I One can obviously get some different results by exploiting the

parallelism in Fqk or by building a dedicated pairing circuit.

Point Addition Point Tripling Pairing

Fqk

Fq

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 10



Hardware Implementation (2)
I In either basis, our field elements are polynomials with

coefficients in F3.
I We take the now conventional approach of representing the i-th

coefficient ai as two bits:

aL
i = ai mod 2

aH
i = ai div 2

and then constructing basic arithmetic cells using a fairly
low-cost arrangement of logic gates:

bL

bL

bH

aL

aH

aH rL

rH

r

aL

a

bH

b

ADD

rH

rL

aL

aL

bL

bL

aH

aH

bH

bH

rH

rL

aL

aL

bL

bL

aH

aH

bH

bH

MUL

r

a

b

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 12



Hardware Implementation (4)

I In a polynomial basis, the multiplication c = a · b is performed
by normal polynomial multiplication and reduction.

I We use a digit-wise rather than bit-wise multiplier design:

���������
	���
��

� ��������������	�
��

��������	� !����	"��#���������	"��
��%$&
��"�

��������'(	"��� ) ����*+'",��.-/	����

0 0

0 0

0

0

0

1

I We were able to fit a digit-size of 4 onto our experimental
platform.

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 14



Hardware Implementation (4)

I In a normal basis, the multiplication c = a · b is performed
according to the formula:

ck =
m−1∑
i=0

ak+i ·
m−1∑
j=0

Mi,j · bk+j

I The matrix M essentially determines how reduction works, it is
very sparse so the whole operation is fairly efficient.

I The structure of the multiplier allows a similar digit-wise
approach, we used a digit-size of 2:

�����

�����

�����

� �
� �

� �
� �

� � ��

� � ��

� � ��

	�

���

� 

���

� �

�����

�����

�����

� �
� �

� �
� �

� � ��

� � ��

� � ��

	�
����

� 
����

� �

�����

�����

�����

� �
� �

� �
� �

� � ��

� � ��

� � ��

	�
����

� 
����

� �

���! "�$#�%'&��)(+*,%.-��

�0/,1 &�2�3 154 (+*,%.-��

��6$6 /,78/"1 %'&��)(+*,%.-��

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 16



Hardware Implementation (4)

I In a polynomial basis, cubing can be calculated in a similar way
to squaring in characteristic two:

I That is, we expand the element using the identity:

(aix
i)3 = a3

i x3i = aix
3i

I Because of reduction, the cube operation dominates critial path
of design since unreduced element is large.

I Cube root can be calculated using the method of Barreto, for
our field u = 32 and v = 5:

t0 =
∑u

i=0 a3ix i

t1 =
∑u−1

i=0 a3i+1x i

t2 =
∑u−1

i=0 a3i+2x i

3
√

a = t0 + t�2u+1
1 − t�u+v+1

1 + t�2v+2
1 − 2t�u+1

2 − 2t�v+1
2

which turns out to be quite efficient.

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 18



Hardware Implementation (5)

I In a normal basis, cube and cube root are just cyclic shifts of
the coefficients:

a3 = (am−1, a0, . . . , am−3, am−2),
3
√

a = (a1, a2, . . . , am−1, a0).

I This was the whole point of investigating their use:
I Cube is used extensively throughout point and pairing arithmetic.
I Efficient cube root it vital for Duursma-Lee algorithm.

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 20



Hardware Implementation (6)

I Inversion was always going to be unpleasant:
I Fortunately we only need it once to perform the final powering

which computes the result f q3−1.
I This computation is decomposed into f 33m · f−1.
I The field representation means we only need one inversion in Fq

(and some extra operations) to invert in Fqk .

I Since it is only used once, we didn’t feel extra hardware was
worthwhile.

I Could have used a variant of the binary EEA, but instead
resorted to powering:

a−1 = a3m−2

I This turns out to be not too bad but can obviously be improved
on depending on the constraints imposed.

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 22



Results (1)
I Used a Xilinx ML300 prototyping device for implementation.
I Essentially, we put an embedded processor and F3m ALU on

the Virtex-II PRO FPGA.
I The hope was to mimic the kind of architecture in a real

processor design.

PowerPC MicroBlaze

Registers

F3m ALU

USB Ethernet LCD ATA PCMCIA

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 24



Results (2)

F
397 in Polynomial Basis

Slices Cycles Instructions Speed
At 16 MHz At 150 MHz

Add 112 3 1 - -
Subtract 112 3 1 - -
Multiply 946 28 1 - -
Cube 128 3 1 - -
Cube Root 115 3 1 - -
Pairing
Duursma-Lee - 59946 7857 3746.6µs 399.4µs
Kwon - 64602 9409 4037.6µs 430.7µs
Powering - 4941 397 308.8µs 32.9µs
Total 4481 - - - -

F
389 in Normal Basis

Slices Cycles Instructions Speed
At 16 MHz At 85 MHz

Add 102 3 1 - -
Subtract 102 3 1 - -
Multiply 1505 48 1 - -
Cube 0 3 1 - -
Cube Root 0 3 1 - -
Pairing
Duursma-Lee - 89046 7857 5563.3µs 1047.6µs
Kwon - 93702 9409 5856.3µs 1102.4µs
Powering - 7941 397 496.3µs 93.4µs
Total 4233 - - - -

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 26



Conclusions

I We can comfortably compute the pairing in under a second
even at low clock speeds.

I There wasn’t a lot of advantage from the normal basis
arithmetic:

I Cube and cube root are cheap but multiplier is expensive.
I The polynomial basis cube root method of Baretto is single-cycle.
I Finding suitable curves and so on is a nightmare ...
I Using the Kwon-BGOS method seems a better choice.

I There is plenty of scope for miniaturisation given performance
margin:

I Using Kwon-BGOS removes need for cube-root hardware.
I Can adjust multiplier digit size, maybe even use a bit-wise

design.
I Share addition logic between adder and multiplier.
I Reduce storage size by improving register allocation or introduce

spillage into main memory.

Philipp Grabher (Graz) and Dan Page (Bristol)

Hardware Acceleration of the Tate Pairing in Characteristic Three Slide 28


