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Background
Attack on Optimized Curves

Overview

New Goubin-style side-channel attack

Target: scalar multiplication on elliptic curves

Chosen-ciphertext

Defeats randomized projective coordinates
countermeasure
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Elliptic Curves on Finite Fields

set C of solutions of a non-singular cubic equation

Choices for the ground field K:
K = Fp with p a large prime (y2 = x3 + a4x + a6)
or K = F2n (y2 + xy = x3 + a2x2 + a6)

Group law on the points of the curve together with a “point
at infinity” (neutral element)

Costly operation used in crypto: u→ uP = P + . . . + P,
u ∈ N, P ∈ C
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Elliptic Curve: example
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Randomized Projective Coordinates

P = (x, y) ∈ C is represented by (X, Y, Z) = (xZ, yZ, Z), for
any Z ∈ K− {0}

avoids computing inverses in computations

if Z is randomized, is a DPA countermeasure
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Goubin Observation (PKC’ 03)

Despite projective randomization, if (X, Y, Z) represents
(x, y), x = 0 =⇒ X = 0 (and y = 0 =⇒ Y = 0)

=⇒ points with x = 0 are distinguished points:

If Hamming weights can be observed, distinguished points
can be detected
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Why do Distinguished Points Matter?

Their appearance can be detected in the course of a
computation

=⇒ Can be used to build tests of the form:

{ secret bit b = 0}
⇐⇒

{distinguished point appears}
We build a class of distinguished points for optimized
curves
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Optimized Parameters used in EC Cryptography

group law on C: rational expressions must be computed

point adding (P + Q) or doubling (P + P) cost measured in
number of elementary operations in the ground field K:+,
×, square, inverse

=⇒ fast operations in the ground field are needed

one common technique: use sparse polynomials P
(K = F2n = F2[X]/P) or sparse primes (K = Fp): modular
reduction easier
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Example of Optimized Parameters: fields for NIST
Curves

Binary fields:

P233(x) = x233 + x74 + 1

P283(x) = x283 + x12 + x7 + x5 + 1

. . .

Prime fields:
p192 = 2192 − 264 − 1

p224 = 2224 − 296 + 1

. . .
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Sparsity

P = Xn + 1 +
I∑

i=0

Xai

p = 2n − 1 +
I∑

i=0

εi2ai, εi = ±1

sparsity: I small
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Multiplication by the Generator in an Optimized Field

K = Fp: if p = 2n − 1 (Mersenne prime), multiplication by 2
= left circular shift (2n = 1 mod p)

K = F2n : same with P = Xn + 1, multiplication by X

if p = 2n − 1+ few terms, multiplication by 2 ' left circular
shift
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Multiplication by the Generator in an Optimized Field

z =
∑

αiui, αi = bit

generator u = X (K = F2n) or u = 2 (K = Fp)

H(z) : hamming weight of z

u× z ' z <<< 1
H(uλ × z) ' H(z) if λ small

W. Dupuy, S. Kunz-Jacques Resistance of Randomized Projective Coordinates Against...



Background
Attack on Optimized Curves

Optimized Parameters
Target of the Attack
Attack Methodology

Observable Point in Projective Coordinates

Suppose P = (uλ, y) ∈ C, λ small (u = 2 if K = Fp, u = X if
K = F2n)

For any projective representation
(X, Y, Z) of P, H(X) ' H(Z)

Indeed, X = uλZ.
Like the distinguished points of Goubin, these points can be
observed through hamming weights.
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Target of the Attack

A black-box performing P→ k × P on a known optimized
curve;

k secret
P controlled by the attacker

uses a standard anti-SPA scalar multiplication algorithm
(eg double-and-add-always)

randomized projective coordinates are used

no exponent randomization
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Double-and-add always algorithm

Input: P ∈ C, k =
∑n

i=0 ki2i an integer
Output: R = nP

R0 ← 0
for i = n downto 0 do

R0 ← 2R0
R1 ← R0 + P
R0 ← Rki

end for
return R0
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Attack Initiation

Build a distinguished point P0: find the smallest λ s.t. there
exists P0 = (uλ, y) on the curve (NIST recommended
curves: λ ≤ 5)

input 1
2 P0 to the black box

If the MSB kn of k is 0, P0 is observed in the first step of
double-and-add

Knowing kn and assuming kn−1 = b, P0 is observed in
second pass on input 1

2kn+b P0

...
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Attack Methodology

Once kn, . . . ki+1 are known, some µi can be computed s.t.
P0 is observed during pass n− i on input

1
µi

P0 if ki = 0

1
µi + 1

P0 if ki = 1

µi might not be coprime with the order of P0, in that case
µi + 1 is
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Detecting the point P0

Assume that when P = (X, Y, Z) is manipulated, H(X) and
H(Z) can be observed (possibly up to some noise)

Statistical test on U = H(X)− H(Z)

If P = P0, H(X) ' H(Z)

If P 6= P0 it is reasonable to expect that H(Z) and H(X) are
uncorrelated
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Point Detection: Basic Statistical Test

Estimate through several measures the standard deviation
of U = H(X)− H(Z)

For a threshold t, we decide P = P0 if σ(U) < t and P 6= P0
otherwise

With probability 1/2, P = P0: compute a threshold s.t.

P(deciding P = P0|P 6= P0) = P(deciding P 6= P0|P = P0)
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Point Detection: Better Statistical Test

Compute the distribution of U under the hypotheses
P = P0, P 6= P0

Perform several experiments and choose the hypothese for
which the observed values are the most likely
(Neyman-Pearson test)

Case P 6= P0: computation easy (uncorrelated Hamming
weights); P = P0: harder, esp. in the prime field case,
because of carries

Theoretically, Neyman Pearson test is optimal

Because of approximations made, basic test better
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Simulated Results on NIST Curves

Curve Experiments per bit Iλ
p192 6 2
p224 10 6
p256 11 12
p384 7 3
p521 3 0
B233 2 1
B283 7 15
B409 2 1
B571 4 15

Table: Experiments Required for a 90% Confidence Level (no added
noise)
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Simulated Results and Curve Properties

Two key parameters:
Number I of parasistic terms in field definition
λ for the distinguished point (uλ, y) found on the curve

Number of measures per bit required roughly ∝ Iλ

In the prime (resp. binary case), V(U) = Iλ/2 (resp
' (I + 1)λ/2)
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Conclusion

Favour cryptosystems where the secret is not used for
scalar multiplication

Use exponent randomization (or more specific
countermeasures)

Need to better understand the effect of optimizations on
security
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BRIP (Mamiya et Al, CHES’ 04)

Input: P ∈ C, k =
∑n

i=0 ki2i an integer
Output: nP

R0 ← random point R
R1 ← −R0
R2 ← P− R0
for i = n downto 0 do

R0 ← 2R0
R0 ← R0 + Rki+1

end for
return R0 + R1

works because R is added 2n −
n−1∑
i=0

2i − 1 = 0 times
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