
Hardware/Software Co-design for
Hyperelliptic Curve Cryptography

(HECC) on the 8051 µP

Lejla Batina, David Hwang, Alireza Hodjat,
Bart Preneel and Ingrid Verbauwhede

2

Outline

• Introduction and Motivation
• Hyperelliptic Curve Cryptography (HECC)
• Case study: HECC on the 8051 µP
• Results
• Conclusions
• Improvements and Future work

3

Introduction

• (H)ECC vs. RSA:
– (H)ECC offers shorter certificates, lower

power consumption, more “security per bit”
• HECC: known since 1988 but only recently

showed its potential
– even shorter operands then for ECC

• Fast finite field arithmetic => efficient PKC
implementations

4

Motivation

• Emerging new applications: wireless
applications, sensor networks, RFIDs, ...
– resource limited
– low-cost, low-power

• PKC is sometimes necessary
– sw-only solutions are too slow on embedded

platforms
– hardware acceleration is required for

computationally intensive operations
– HW/SW co-design is the only answer

5

Hyperelliptic Curves (1/2)

A hyperelliptic curve of genus g over a finite
field K:

where:
f and h are polynomials, deg(h) ≤ g,
deg(f)=2g+1
f is monic
some more conditions should be satisfied

],,[)()(: 2 yxKinxfyxhyC =+

6

Hyperelliptic Curves (2/2)

Type II curves:

A divisor on C is a formal sum of points on C i.e.
with a degree

Div0 – divisors of order 0
The Jacobian of C is defined by Jac(C)= Div0/P,
where P is the set of all principal divisors (a divisor D
is called principal if D=div(f) for some f)
Jac(C) is an abelian group => DL system
Usual representation D=[u,v], where u is monic of
degree 2, deg(v) < deg(u)

],,[: 0
23

3
52 yxKinfxxfxxyyC +++=+

PmD P∑= ∑= PmD)deg(

7

(H)ECC hierarchy

Point/Divisor Multiplication

Point/Divisor DoublePoint/Divisor Add

GF(qm) add./subtr. GF(qm) multipl. GF(qm) inversion

8

Case study: HECC on the µP

• 3 different implementations
– pure software implementations

• C implementations
• mixed C/assembly

– hardware/software models
• software routines enhanced with binary field

operations performed in hardware
• 2 options for the data-path

9

The platform

10

P0-P3

Instruction Decoder

FSM
P-ports interface

ALU XOR Logics
(Finite Field

Multiplication/Addition)

Data path

8051
Core

RAM

8051 Microprocessor

ROM

Finite Field Arithmetic
Operations

Instruction Sets Decoder
for Co-processor

Point/Divisor Addition/Doubling
Inversion in Binary Fields
Coordinate Conversion

Crypto-
system

ECC/HECC Point/Divisor Multiplication

HW/SW Boundary

Hw/sw co-design for ECC/HECC

11

Implementations options

• Software Implementations
– Pure C and C/assembly implementations
– Compiled onto 8051 using Keil suite
– Multiplication: comb-based
– Inversion: Fermat

• 2 options for hardware/software
implementations
– A “multiplier-only” data-path
– A “multiply-and-add” data-path

12

First hardware/software solution

13

Second solution: multiply-and-add
data-path

14

Design environment - GEZEL

• Dalton 8051 ISS was used for simulation
of software-only solution

• GEZEL – for HW/SW co-design
– used as a HW description language
– used to co-simulate the 8051 with a 12 MHz

hw module

15

Results - field operations
Operation Perf.

[# cl. cyc.]
Perf.
[ms]@12MHz

XRAM
[Bytes]

ROM
[Bytes]

Addition
(SW)

38 K 3.2 54 608

Multipl.
(SW)

650 K 54.1 122 2065

Addition
(HW)

28.2 K 2.3 53 934

Multipl.
(HW)

28.2 K 2.3 53 934

Inversion
(HW)

788.5 K 65.7 75 1835

ab+c
(HW)

30.5 K 2.5 44 942

16

Results - Divisor mult.

Implemen. FPGA
[#LUTs]

Perf.
[s]@12MHz

XRAM
[Bytes]

ROM
[Bytes]

C
Inv. in SW

3300 191.7 820 11754

C+ASM
Inv.in SW

3300 64.9 820 12284

C+HW
Inv. in SW

3600 52 820 11754

 C+HW
Inv.in HW

3600 4.1518 927 12789

C+HW
Inv.in HW
modif.d.p.

3781 2.488 936 11524

17

Comparison with ECC
Implemen. FPGA

[#LUTs]
Perf.
[s]@12MHz

XRAM
[Bytes]

ROM
[Bytes]

ECC: SW 3300 144.5 980 7597

HECC: SW 3300 149.8 1186 13926

ECC:
C+HW (1st)

3868 5.52 980 7597

 HECC:
C+HW (1st)

3600 4.1518 927 12789

ECC:
C+HW (2nd)

4210 3.97 910 8739

HECC:
C+HW (2nd)

3781 2.488 936 11524

18

Results: Summary

• Critical for performance are data transfers
• Modified data-path is more beneficial for

HECC
• HECC: faster + less extra hardware
• Co-processor usage: less than 1% in both

cases => more speed-up in performance
is possible

19

Conclusions

• HW/SW co-design is a new alternative for
low-power and low footprint devices

• HECC can be efficiently implemented on a
small 8-bit processor

• Addition of a small HW module results in a
substantial speed-up

• Parallelism for group operations can be
efficiently exploited

	Hardware/Software Co-design for Hyperelliptic Curve Cryptography (HECC) on the 8051 µP
	Outline
	Introduction
	Motivation
	Hyperelliptic Curves (1/2)
	Hyperelliptic Curves (2/2)
	(H)ECC hierarchy
	Case study: HECC on the P
	The platform
	Implementations options
	First hardware/software solution
	Second solution: multiply-and-add data-path
	Design environment - GEZEL
	Results - field operations
	Results - Divisor mult.
	Comparison with ECC
	Results: Summary
	Conclusions

