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Power Analysis Attacks

« With no counter-measures and the binary exp" alg™,
averaging power traces at the same instants during several
exp"s enables one to differentiate squares and multiplies
and hence deduce the exponent bits (Kocher).

e Averaging power traces over individual digit-by-digit products
In a single exp" enables one to differentiate multiplicands
In m-ary exp" and hence deduce the exponent (CHES 2001).

e Smartcards have limited scope for including expensive,
tamper-resistant, hardware measures.

« Good software counter-measures are required: new algorithms
as well as modifying arguments e.g. D to D+r@(N).
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m-ary EXpn (Rever sed) -

{ To compute: P= CP}
Q~C;

P ~1;

WhileD >0do

Begin

d - Dmod m;
If d# Othen
P QixP;
Q- Qm;
D - Ddivm;
{ Invariant: CPInt=QP x P }

End
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The Mist Exp" Algorithm

{ To compute: P= CP}
Q- C;
P ~1;
WhileD > 0do
Begin
Choose a random base m, e.g. from {2,3,5} ;
d -« Dmod m;
If d# 0then
P QixP;
Q - Q";
D-Ddvm;
{ Invariant; CPInt=QP x P }
End

The MIST Algorithm
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Randomary Exponentiation

The main computational part of the loop Is:
If d# 0then
P QIxXP;
Q -~ Qn
« To provide the required efficiency, a set of possible values
for m are chosen so that an efficient addition chain for m
contains d, e.g.

1+1=2, 2+1=3, 2+3=5 is an addition chain for base
m=5 suitable for digitsd=0, 1, 2 or 3.

« Comparable to the 4-ary method regarding time complexity.
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Running Example

Fix the base set = {2, 3, 5}. Consider D = 235

D md Q(before) Qd Qm P (after)
235 3,1 C!t C1 C3 C1
B8 2,0 C3 1 C6 C1
39 5, 4 C6 C 24 C30 ClxC2#4 =C2
7 2.1 C30 C30 (60 C25x(C30 = C 55
3,0 C60 1 C 180 C55
1 2, 1 C 180 C180 (360 CHx(C180 = C 235
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Choice of Base Set

e Security. Bases must be chosen so that sequences of
squares & multiplies or opd sharing do not reveal m.

o Efficiency:
— Bases m must be chosen so that raising to the power
m Is (time) efficient enough.

— Space Is required to store addition chains.

— As few registers as possible should be used for the
exponentiation.

e One Solution: Take the set of bases{2,3,5}.
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Choice of Base

Example algorithm (see CT-RSA 2002 paper):
m— 0O;

|f Random(8) < 7 then
If (D mod 2)=0thenm ~ 2¢else
If (D mod5)=0thenm ~ 5else
If (D mod 3)=0thenm ~ 3;

If m=0then

Begin
P —« Random(8) ;
Ifp<6thenm - 2¢€lse
If p<7thenm ~ 5¢else

m— 3
End

Colin D. Walter, Comodo Research Lab, Bradford
The MIST Algorithm

Next Generation Digital Security Solutions CHES2002 8/19



C.-O-M-O:-D-0O

Probability of (m,d)

» Define probabilities:

pp = prob(D=I mod 30)
P = Prob(choosing mgiven D=I mod 30)

e Then:
P = 2imodso P Prj IS prob of base m

Prmd = 2izdmod30 P Prj IS prob of pair (m,d)

 For the base selection process above:
P, = 0.629 p,=0.228 p: = 0.142
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Addltlon SUb-Cha|nS RESEARCH LAB

e Let (ijk) mean: multiply contents at addressesi and |
and write result to address k.
e Use 1forlocationof Q, 2fortemporary register, 3for P:

(111) for (m,d) =(2,0)
(112, 133) for (md)=(2,1)
(112, 121) for (m,d) = (3,0)
(112, 133, 121) for (m,d) =(3,1)
(112, 233, 121) for (m,d) =(3,2)
(112, 121, 121) for (m,d) = (5,0)

(112,133, 121, 121)  for (md) = (5,1)
(112, 233, 121, 121)  for (md) = (5,2)
(112, 121,133, 121)  for (md) = (5,3)
(112, 222,233, 121)  for (md) = (5,4)
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S& M Seguences

* Assume an attacker can distinguish Squares and Multiplies
from asingle exponentiation (e.g. from Hamming weights of
arguments deduced from power variation on bus.)

e A division chain isthelist of pairs (m,d) used in an exp"
scheme. It determines the addition chain to be used, and hence
the sequence of sguares and multiplies which occur:

(2,0) S (2,2), (3,0) M
(31),(32),(50) SMM  (51),(52),(53) SVMM
(5,4) SSVIM

e Base sub-chain boundaries are deduced from occurrences of S
except for ambiguity between (5,4) and (2,0)(3,x) or (2,0)(5,0).
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Running Example

D (m,d) S&M subchain | nterpretations
235 (3,1 S(M)M (3,1), (3,2), (5,0)
78 (2,0) S (2,0)
39 (54) SSMM (5,4), (2,0)(3,1),
(2,0)(3,2), (2,0)(5,0)

7 (21 SM (2,1), (3,0)
3 (30 SM (2,1), (3,0)
1 (21 (SM (2,1)

Result; SM.S.SSMM.SM.SM.M with 11223141 = 48 choices.

(Modifications for end conditions: e.g. theinitial M and final Sare
superfluous.)
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Exponent Choices

« There is/are:

1way tointerpret S

2 ways to interpret SM

3 ways to interpret SMM with preceding M
4 ways to interpret SMM with preceding S
4 ways to interpret SMMM

« The probabilities of the sub-chains can be calculated:
Ps=Prob(S =pP,g; Pav = P21tP30; Psum = €tC.

 So average number of choices to interpret a sub-chain is
1P's2P'sm 3P msum 4P’ ssum 4P swmm =~ 1.7079
where ' Is the modification due to parsing SSMM into
S.SMM always.
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S& M Theorem

» There are on average 0.766 log,D occurrences of S per
addition chain, so 1.70790.76610g:D = 705916 exponents
which can generate the same S& M sequence.

. THEOREM . The search space for exponents with
the same S& M sequence as D has size approx D35,

o For 4-ary exp", it ismuch easier to average traces,
easier to be certain of the S& M seguence,
and the search spaceis only D718 —which is smaller.

e Both are computationally infeasible searches.
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Operand Re-Use

e From itslocation, address, power use in mult" or Hamming
weight, it may be possible to identify re-use of operands.
Assume we know when operands are equal, but nothing more.

— since only sguares have egual operands,
this means the S& M sequence can be recovered.

— for classical m-ary & diding windows exp", thereisa
fixed pre-computed multiplicand for each expt digit value,
so the secret exponent can be reconstructed uniquely.

> MIsT operand sharing leaves ambiguities:
— (2,1) and (3,0) have the same operand sharing pattern

and both are common: pg, = 0.458 .

_ Colin D. Walter, Comodo Research Lab, Bradford
The MIST Algorithm Next Generation Digital Security Solutions CHES2002 15/19



C.-O-M-O:-D-0O

RESEARCH LAB

Running Example
D (m,d) Op Sharing | nterpretations

235 (3,1) (3,1)
78 (2,0) (2,0)
39 (54) (5,4)

721 (2,1), (3,0)

3 (3,0) (2,1), (3,0)
1 (21 (2,2)

Result: 22 =4 choices.

( Modifications for end conditions:
e.g. the most significant digit d is non-zero.)

_ Colin D. Walter, Comodo Research Lab, Bradford
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Operand Re-Use Theorem

o With similar working to the S& M case:

THEOREM : For MIST, the search space for
exponents with the same operand sharing
sequence as D has size approx D8,

e The search space for mary exp" has size D°.

 There are several necessary boring technicalities to ensure
mathematical rigour — skip sections 4 and 5 in the paper!
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Difficulties?

e The above requires correct identification of op? sharing first
(operands are never used more than 3 times)

o Mistakes are not self-correcting in an obvious way;
only afew errors can vastly increase the search space.

e Thereisno known way to combine results from other exp™,
especially iIf exponent blinding is applied.

» Always selecting zero digits vastly decreases the search.

o Small public exponent, no exponent blinding and known RSA
modul us provide half the bits, reducing the search space to D¢,
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Conclusion

e “Random-ary exponentiation” —
a novel exp" alg™ suitable for RSA on smartcard
(no Inverses need to be computed).

« Time& Spacearecomparableto 4-ary exp".

 Random choices & little operand re-use makethe
usual averaging for DPA much morerestricted.

« MIST ismuch stronger against power analysis
than standard exp" algorithms.
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