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Power Analysis Attacks

• With no counter-measures and the binary expn algm,       
averaging power traces at the same instants during several
expns enables one to differentiate squares and multiplies
and hence deduce the exponent bits (Kocher).

• Averaging power traces over individual digit-by-digit products 
in a single expn enables one to differentiate multiplicands        
in m-ary expn and hence deduce the exponent (CHES 2001).

• Smartcards have limited scope for including expensive,     
tamper-resistant, hardware measures.

• Good software counter-measures are required: new algorithms 
as well as modifying arguments e.g. D to D+rφ(N).
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m-ary Expn (Reversed)

{ To compute: P = CD }
Q ← C  ;
P  ← 1  ;
While D > 0 do
Begin

d ← D mod m ;
If d ≠ 0 then

P ← Qd × P ;  
Q ← Qm ;
D ← D div m ;
{ Invariant: CD.Init = QD × P  }

End
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The MMISTIST Expn Algorithm
{ To compute: P = CD }
Q ← C  ;
P  ← 1  ;
While D > 0 do
Begin

d ← D mod m ;
If d ≠ 0 then

P ← Qd × P ;  
Q ← Qm ;
D ← D div m ;
{ Invariant: CD.Init = QD × P  }

End

Choose a random base m, e.g. from {2,3,5} ;



The MIST Algorithm
Colin D. Walter, Comodo Research Lab, Bradford

Next Generation Digital Security Solutions CHES 2002    5/19

Randomary Exponentiation

The main computational part of the loop is:
If d ≠ 0 then                                                            

P ← Qd × P ;       
Q ← Qm

• To provide the required efficiency, a set of possible values 
for m are chosen so that an efficient addition chain for m
contains d, e.g.

1+1=2,   2+1=3,   2+3=5  is an addition chain for base      
m=5  suitable for digits d = 0, 1, 2 or 3.

• Comparable to the 4-ary method regarding time complexity.
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Running Example

Fix the base set = {2, 3, 5}.  Consider D = 235

D m, d Q (before) Qd Qm P (after) 

235 3, 1 C 1 C 1 C 3 C 1

78 2, 0 C 3 1 C 6 C 1

39 5, 4 C 6 C 24 C 30 C1×C24 = C 25

7 2, 1 C 30 C 30 C 60 C25×C30 = C 55

3 3, 0 C 60 1 C 180 C 55

1 2, 1 C 180 C 180 C 360 C55×C180 = C 235
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Choice of Base Set

• Security: Bases must be chosen so that sequences of 
squares & multiplies or opd sharing do not reveal m.

• Efficiency: 
– Bases m must be chosen so that raising to the power 

m is (time) efficient enough.               

– Space is required to store addition chains.               

– As few registers as possible should be used for the 
exponentiation.

• One Solution: Take the set of bases {2,3,5}.
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Choice of Base
Example algorithm (see CT-RSA 2002 paper):

m ← 0 ;

If Random(8) < 7 then
If (D mod 2) = 0 then m ← 2 else
If (D mod 5) = 0 then m ← 5 else
If (D mod 3) = 0 then m ← 3 ;

If m = 0 then
Begin

p ← Random(8) ;
If p < 6 then m ← 2 else
If p < 7 then m ← 5 else
m ← 3 

End
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Probability of (m,d)

• Define probabilities:

pi =  prob(D i mod 30)
pm|i =  prob(choosing m given D i mod 30)

• Then:
pm = ∑i mod 30 pi pm|i is prob of base m 

pm,d = ∑i≡d mod 30 pi pm|i is prob of pair (m,d)

• For the base selection process above:

p2 = 0.629 p3 = 0.228 p5 = 0.142
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Addition Sub-Chains
• Let  (ijk)  mean: multiply contents at addresses i and j

and write result to address k.
• Use   1 for location of Q,   2 for temporary register,   3 for P:

(111) for  (m,d) = (2,0)
(112, 133) for  (m,d) = (2,1)
(112, 121) for  (m,d) = (3,0)
(112, 133, 121) for  (m,d) = (3,1)
(112, 233, 121) for  (m,d) = (3,2)
(112, 121, 121) for  (m,d) = (5,0)
(112, 133, 121, 121) for  (m,d) = (5,1)
(112, 233, 121, 121) for  (m,d) = (5,2)
(112, 121, 133, 121) for  (m,d) = (5,3)
(112, 222, 233, 121) for  (m,d) = (5,4)



The MIST Algorithm
Colin D. Walter, Comodo Research Lab, Bradford

Next Generation Digital Security Solutions CHES 2002    11/19

S&M Sequences
• Assume an attacker can distinguish Squares and Multiplies

from a single exponentiation  (e.g. from Hamming weights of 
arguments deduced from power variation on bus.) 

• A division chain is the list of pairs (m,d) used in an expn

scheme.  It determines the addition chain to be used, and hence 
the sequence of squares and multiplies which occur:

(2,0) S (2,1), (3,0) SM
(3,1), (3,2), (5,0) SMM (5,1), (5,2), (5,3) SMMM
(5,4) SSMM

• Base sub-chain boundaries are deduced from occurrences of S
except for ambiguity between (5,4) and (2,0)(3,x) or (2,0)(5,0). 
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Running Example
D (m,d) S&M subchain Interpretations

235 (3,1) S(M)M (3,1), (3,2), (5,0)

78 (2,0) S (2,0)

39 (5,4) SSMM (5,4), (2,0)(3,1), 
(2,0)(3,2), (2,0)(5,0)

7 (2,1) SM (2,1), (3,0)

3 (3,0) SM (2,1), (3,0)

1 (2,1) (S)M (2,1) 

Result:  SM.S.SSMM.SM.SM.M with 11223141 = 48 choices.
(Modifications for end conditions: e.g. the initial M and final S are 

superfluous.)
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Exponent Choices
• There is/are:

1 way   to interpret  S
2 ways  to interpret  SM
3 ways  to interpret  SMM with preceding M
4 ways  to interpret  SMM with preceding S
4 ways  to interpret  SMMM

• The probabilities of the sub-chains can be calculated:     
pS = prob(S) = p2,0 ; pSM = p2,1+p3,0 ; pSMM = etc.

• So average number of choices to interpret a sub-chain is            
1p’S 2p’SM 3p’MSMM 4p’SSMM 4p’SMMM § 1.7079

where ' is the modification due to parsing SSMM into
S.SMM always.
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S&M Theorem

• There are on average 0.766 log2D occurrences of S per 
addition chain, so 1.70790.766 log2D =  D0.5916 exponents 
which can generate the same S&M sequence.

• TTHEOREM HEOREM :  The search space for exponents with                       
the same S&M sequence as D has size approx D3/5.

• For 4-ary expn, it is much easier to average traces,                         
easier to be certain of the S&M sequence,                       
and the search space is only D7/18 – which is smaller.

• Both are computationally infeasible searches.
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Operand Re-Use
• From its location, address, power use in multn or Hamming  

weight, it may be possible to identify re-use of operands.  
Assume we know when operands are equal, but nothing more.

– since only squares have equal operands,                         
this means the S&M sequence can be recovered.

– for classical m-ary & sliding windows expn,  there is a 
fixed pre-computed multiplicand for each expt digit value,        
so the secret exponent can be reconstructed uniquely.

•• MMISTIST operand sharing leaves ambiguities:

– (2,1) and (3,0) have the same operand sharing pattern           

and both are common:  pSM = 0.458 .
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Running Example
D (m,d) Op Sharing Interpretations

235 (3,1) (3,1)

78 (2,0) (2,0)

39 (5,4) (5,4)

7 (2,1) (2,1),   (3,0)

3 (3,0) (2,1),   (3,0)

1 (2,1) (2,1) 

Result:  22 = 4 choices.
( Modifications for end conditions: 
e.g. the most significant digit d is non-zero.)
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Operand Re-Use Theorem

• With similar working to the S&M case:

TTHEOREMHEOREM :  For MMISTIST, the search space for 
exponents with the same operand sharing                  
sequence as DD has size approx DD1/31/3. 

• The search space for m-ary expn has size D0.

• There are several necessary boring technicalities to ensure 
mathematical rigour – skip sections 4 and 5 in the paper!



The MIST Algorithm
Colin D. Walter, Comodo Research Lab, Bradford

Next Generation Digital Security Solutions CHES 2002    18/19

Difficulties?

• The above requires correct identification of opd sharing first 
(operands are never used more than 3 times)

• Mistakes are not self-correcting in an obvious way;                          
only a few errors can vastly increase the search space.

• There is no known way to combine results from other expns, 
especially if exponent blinding is applied.

• Always selecting zero digits vastly decreases the search.

• Small public exponent, no exponent blinding and known RSA 
modulus provide half the bits, reducing the search space to D1/6.
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Conclusion

• “Random-ary exponentiation”  –
a novel expn algm suitable for RSA on smartcard            
(no inverses need to be computed).

• Time & Space are comparable to 4-ary expn. 

• Random choices & little operand re-use make the 
usual averaging for DPA much more restricted.

•• MMISTIST is much stronger against power analysis 
than standard expn algorithms.


