CHES 2002. San Francisco

On the Efficient Generation of Elliptic Curves Over Prime Fields

E. Konstantinou, Y.C. Stamatiou, and C. Zaroliagis Department of Computer Engineering and Informatics, University of Patras, Greece & Computer Technology Institute, Patras, Greece

Elliptic Curves

 \succ The set of solutions (*x*,*y*) to

$$y^2 = x^3 + ax + b$$

Usually defined over a prime or binary field.
E.g., y² = x³ + x:

Basic EC Algebraic Operations

(Scalar multiplication by an integer)

$$P = kP = P + \dots + P$$

Generating Elliptic Curves

Three methods:

- **Constructive Weil descent**
 - → Samples from a, rather, limited subset of ECs.
- **Point counting** (Based on Schoof's point counting method)
 - → Rather slow
- □ The Complex Multiplication method
 - Rather involved implementation, but more efficient and guarantees construction of ECs of crypto strength.

Properties of Secure ECs

- To ensure intractability of the ECDLP by all known attacks, the EC group order, *m*, should satisfy the following conditions:
- $\checkmark m = nq$ where q a prime > 2¹⁶⁰
 - → Avoids Pohlig-Hellman, Pollard-Rho attacks
- $\checkmark m \neq p$ (the order of F_p)
 - → Avoids anomalous attack
- ✓ $p^k \neq 1$ (mod m) for all $1 \le k \le 20$
 - → MOV attack

The general CM Method

- Objective: Build an EC of *prescribed* order having the security properties shown before.
- ➢ <u>Method:</u>
- *Given* prime *p*, find the smallest *D* so that $4p = u^2 + Dv^2$.
- Check whether either $\underline{m = p + 1 u}$ or $\underline{m = p + 1 + u}$ has the security properties.
- Construct the *Hilbert polynomial* corresponding to *D*.
- Find a root modulo *p* of the polynomial.
- Construct the ECs with the root as invariant.
- Choose the curve having the order determined in previous step.

Shortcomings of the CM method

- Time consuming construction of Hilbert polynomials (required precision, root location etc.) as D increases – huge polynomial coefficients
- Each time a new prime is constructed, a D is selected that was possibly used before with some other prime – construction of the same polynomials

Need for improvements, especially for hardware devices where *memory* and *speed* are limited resources

Improvement!

Savaş, Schmidt, Koç, CHES 2001:

- As Hilbert polynomials depend only on D, precompute Hilbert polynomials for a specific set of D values
- Then choose a D from among this set, avoiding recomputation of the polynomials
- **For various** *u*, *v* test whether $p = (u^2 + Dv^2)/4$ is prime
- > Determine the curve order as before
- Finally, locate the roots (this depends on *p*) and construct the appropriate elliptic curve

Possible problem: large memory requirements for storing Hilbert polynomials

Our approach

- ► Basically the usual CM method
- On line computation (or precomputation) of Weber polynomials
- Roots of these polynomials are easily *transformed* into the roots of the corresponding Hilbert polynomials but no Hilbert polynomial is actually constructed
- **But why use Weber polynomials?**

Weber vs. Hilbert Polynomials

- The construction of both types of polynomials requires high precision complex, floating point arithmetic.
- Drawback of Hilbert polynomials: their fast growing (with D) coefficients time consuming construction and difficult to implement in limited resources devices.
- Weber polynomials on the other hand, have *much smaller* coefficients.

An Example (D = 292):

$$W_{292}(x) = x^4 - 5x^3 - 10x^2 - 5x + 1$$

The Details of our CM Variant

Preprocessing Phase:

- 1. Choose a discriminant *D*.
- 2. <u>Construct the Weber (or Hilbert) polynomial (on-line or off-line).</u>

Main Phase:

- 1. **Produce a random prime** *p* and check if there are integers (u,v) satisfying $4p = u^2 + Dv^2$ (using Cornacchia's algorithm). If not, repeat.
- 2. Possible curve orders: $\underline{m = p + 1 u}$ and $\underline{m = p + 1 + u}$. Check if at least one of them is *suitable*. If not, return to the previous step.
- 3. Compute the roots of the polynomial modulo *p*. Transform roots of Weber polynomial (if Weber polynomials were chosen) to roots of the corresponding Hilbert polynomial.
- 4. Each root represents a *j*-invariant, leading to two elliptic curves.
- 5. Choose the curve which has order *m* (probabilistic check). CHES 2002, San Francisco

Implementation Environment

The experiments were carried out on a Pentium III (933 MHz) with 256 MB of main memory, running SuSE-Linux 7.1, using the ANSI C gcc-2.95.2 compiler with the GNUMP library.

Code size: 69Kbytes, including the code for the polynomials, or 56Kbytes without this code.

Running Times (Polynomials)

Running Times (our CM Variant)

The case h = 8 (our CM Variant)

Required Precision (Taylor Series Terms)

Observations

- Our variant was faster for all degrees of polynomials h 30 than the variant of [Savaş et al.]
- As h increases and for sufficiently large Ds our variant's performance degrades due to
 - #iterations to find $p \oplus 2h$ (our variant)
 - VS.
 - #iterations to find $p \oplus 300h/\sqrt{D}$ [Savaş *et al.*] (b) Root finding procedure of NTL used by [Savaş *et al.*] is faster than

ours.

(a)

- Resource requirements not too prohibitive for on line generation of Weber polynomials on hardware devices
- Combine on-line and off-line generation of polynomials

Future Work

- Adaptation of (part of) our library for various popular *hardware devices* (e.g. reconfigurable architectures of FPGA + processor on a chip)
- Implementation of the CM method on a variety of hardware devices and comparative study of resulting time and memory requirements
- Feasibility of a complete EC libraryon hardware devices that can *modify* EC system parameters