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¾The set of solutions (x,y) to

¾Usually defined over a prime or binary field.
¾E.g., y2 = x3 + x:

Elliptic Curves

baxxy ++= 32

Q F23
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Basic EC Algebraic Operations

(Scalar multiplication by an integer) (Scalar multiplication by an integer) 
¾Q = kP = P + …+ P

k times

(Point addition)(Point addition)
¾R = P + Q
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Generating Elliptic Curves

Three methods:

�Constructive Weil descent

Samples from a, rather, limited subset of ECs.

�Point counting (Based on Schoof’s point counting method)

Rather slow

�The Complex Multiplication method

Rather involved implementation, but more efficient 
and guarantees construction of ECs of crypto strength.
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Properties of Secure ECs

¾To ensure intractability of the ECDLP by all known 
attacks, the EC group order, m, should satisfy the 
following conditions:

9m = nq where q a prime > 2160

Avoids Pohlig-Hellman, Pollard-Rho attacks
9m     p (the order of Fp)

Avoids anomalous attack
9 pk 1 (mod m) for all 1    k 20

MOV attack
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The general CM Method

¾ Objective: Build an EC of prescribedprescribed order having the security 
properties shown before.

¾ Method:
•• GivenGiven prime p, find the smallest D so that 4p = u2 + Dv2.
• Check whether either m = p + 1 – u or m = p + 1 + u has the 

security properties.
• Construct the Hilbert polynomial corresponding to D.
• Find a root modulo p of the polynomial.
• Construct the ECs with the root as invariant.
• Choose the curve having the order determined in previous step.
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Shortcomings of the CM method

¾Time consuming construction of Hilbert polynomials 
(required precision, root location etc.) as D increases –
huge polynomial coefficients

¾Each time a new prime is constructed, a D is selected that 
was possibly used before with some other prime –
construction of the same polynomials

¾Need for improvements, especially for hardware devices 
where memory and speed are limited resources
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Improvement!

Savaú, Schmidt, Koç, CHES 2001:
¾ As Hilbert polynomials depend only on D, precompute Hilbert 

polynomials for a specific set of D values

¾ Then choose a D from among this set, avoiding recomputation of the 
polynomials

¾ For various u, v test whether p = (u2 + Dv2)/4 is prime
¾ Determine the curve order as before

¾ Finally, locate the roots (this depends on p) and construct the 
appropriate elliptic curve

Possible problem:Possible problem: large memory requirements for storing Hilbert 
polynomials
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Our approach

¾Basically the usual CM method
¾On line computation (or precomputation) of Weber 

polynomials
¾Roots of these polynomials are easily transformed

into the roots of the corresponding Hilbert 
polynomials but no Hilbert polynomial is actually 
constructed

¾¾But why use Weber polynomials?But why use Weber polynomials?
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Weber vs. Hilbert Polynomials

¾The construction of both types of polynomials requires high 
precision complex, floating point arithmetic.

¾¾ DrawbackDrawback of Hilbert polynomials: their fast growing (with 
D) coefficients - time consuming construction and difficult 
to implement in limited resources devices.

¾Weber polynomials on the other hand, have much smaller much smaller 
coefficients.
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An Example (D = 292):

W292(x) = x4 - 5x3 - 10x2 - 5x + 1

H292(x) = x4 - 20628770980428304608   • 102  x3  -
93693622511929038759497066112    • 106 x2 +
45521551386379385369629968384    • 109 x
380259461042512404779990642688  • 1012

(A lot of trailing zeros!)(A lot of trailing zeros!)
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The Details of our CM Variant

Preprocessing Phase:
1. Choose a discriminant D.
2. Construct the Weber (or Hilbert) polynomial (on-line or off-line).
Main Phase:
1. Produce a random prime p and check if there are integers (u,v) 

satisfying 4p = u2 + Dv2 (using Cornacchia’s algorithm). If not, repeat.
2. Possible curve orders: m = p + 1 – u and m = p + 1 + u. Check if at least 

one of them is suitablesuitable. If not, return to the previous step.
3. Compute the roots of the polynomial modulo p. Transform roots of 

Weber polynomial (if Weber polynomials were chosen) to roots of the 
corresponding Hilbert polynomial.

4. Each root represents a j-invariant, leading to two elliptic curves.
5. Choose the curve which has order m (probabilistic check).
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Implementation Environment

¾The experiments were carried out on a Pentium III 
(933 MHz) with 256 MB of main memory, running 
SuSE-Linux 7.1, using the ANSI C  gcc-2.95.2 
compiler with the GNUMP library.

¾¾Code size:Code size: 69Kbytes, including the code for the 
polynomials, or 56Kbytes without this code.
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Running Times (our CM Variant)
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Required Precision
(Taylor Series Terms)
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Observations
¾ Our variant was faster for all degrees of polynomials h } 30 than the variant 

of [Savaú et al.]
¾ As h increases – and for sufficiently large Ds – our variant’s performance 

degrades due to

(a) #iterations to find p ¡ 2h (our variant)
vs.

#iterations to find p ¡ [Savaú et al.]
(b) Root finding procedure of NTL used by [Savaú et al.] is faster than 

ours.

¾ Resource requirements not too prohibitive for on lineon line generation of Weber 
polynomials on hardware devices

¾ Combine on-line and off-line generation of polynomials

Dh /300
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Future Work

¾Adaptation of (part of) our library for various 
popular hardware devices (e.g. reconfigurable
architectures of FPGA + processor on a chip)

¾Implementation of the CM method on a variety of 
hardware devices and comparative study of resulting 
time and memory requirements

¾Feasibility of a complete EC libraryon hardware 
devices that can modify EC system parameters


