A Low-Power Design for an Elliptic Curve Digital Signature Chip

Rich Schroeppel, Tim Draelos, Russell Miller, Rita Gonzales, Cheryl Beaver {rschroe;tjdrael;rdmille;ragonza;cbeaver}@sandia.gov

Sandia National Laboratories Aug. 14, 2002

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Motivation

- Public key authentication in resource constrained environments
 - E.g. Battery operated, unattended sensor-based monitoring
 - Low power for signature generation
- Design choices balance between power, size, and speed
- Short signatures (356 bits)
- Low Bandwidth
- Standalone chip, or piece of larger chip
- Bump-in-the-wire option

Application Concept

- Nuclear Material Monitoring & Inventory Application
 - Fiber Optic Tamper Indication
 - Motion, Temperature sensors
 - Two-way wireless communication
 - Message authentication/encryption
 - Battery life in excess of 5 years
 - Reduced size (1.5"x 4.1"x 4.6")
 - Low cost module (\$550 estimate)

Design Choices

- Elliptic Curve Optimal El Gamal Signatures

 No modular reciprocals
- Elliptic Curve (EC) uses characteristic 2 field, GF(2¹⁷⁸)
- VHDL for portability
- Designed-in power management

Algorithm Components

- Elliptic Curve operations for signature
 - Point multiplication
 - Halve&Add Method
 - Signed Sliding Window multiplication
 - Pre-compute 3P,5P,7P
- Finite Field Operations
 - Elliptic curve operations are built up from finite field primitives such as multiplication, reciprocal, and solving a quadratic equation

Algorithm Optimizations

- EC Point halving
 - Point-slope form
- Field Towers
- Almost Inverse Algorithm
 - Fast degree comparison, fast shift, fast fix-up
- Quadratic Solve circuit design
- Field multiplication radix 16
- Trinomial field basis

The Signature Scheme

- Parameters
 - Public: Elliptic Curve **E**, Point $G=(x_G, y_G)$
 - of order **r**, Field = $GF(2^n)$, Public Key W = sG
 - Private: long term private key s, 0 < s < r
- Signature: On message, M
 - f=Hash(M).
 - Choose per message random, v.
 - Compute $V = vG = (x_V, y_V)$.
 - $c = x_V \pmod{r}$
 - $d = cfs + v \pmod{r}$
 - Signature is (c,d)
- Verification: On received input (M,c,d)
 - If c <=0 or c>r-1, output "reject" and stop
 - f = Hash(M)
 - $h = cf \pmod{r}$
 - $P = dG hW = (x_P, y_P)$
 - $c' = x_P \mod r$
 - If c = c' then output "accept" else "reject"

Point Halving

- 3 times faster than doubling
- No reciprocals
- E: $y^2 + xy = x^3 + ax^2 + b$
- Use point in (x,r) format (r = y/x) (point-slope)
- Input $P = (x_P, r_P)$; Output $= Q = (x_Q, r_Q)$ where 2Q=P
 - 1. $Mh = Qsolve(x_P+a)$
 - 2. $T = x_P(r_P + Mh)$
 - 3. If parity(tm&T)=0 then
 - » Mh = Mh + 1; $T = T + x_P$
 - » tm is a trace mask depending on the field

4.
$$x_Q = \sqrt{T}$$
; $r_Q = Mh + x_Q + 1$

Field Towers $GF(2^{178}) = GF(2^{89}) / (V^2 + V + 1)$ 2 $GF(2^{89}) = GF(2) / (u^{89} + u^{38} + 1)$ 89 GF(2)

$$\alpha = a_1 V + a_0 \in GF(2^{178}); \quad a_i \in GF(2^{89})$$

Write $\alpha = (a_1, a_0)$

Field Towers

• Arithmetic based in $GF(2^{89})$,

$$\alpha + \beta = (a_1 + b_1, a_0 + b_0)$$

• E:
$$y^2 + xy = x^3 + ax^2 + b$$

e.g.

- Fixed a = (1,0) for simplicity
- b variable
- Main optimizations done over GF(2⁸⁹)
- Order of G ~ 177 bits is equivalent to 1500 bit RSA
- Not subject to known field tower attacks

Quadratic Solution

- Qsolve(a) = z where $z^2 + z = a$
- Qsolve for $GF(2^{89})$:

- Input $a = (a_{00}, a_{01}, \dots, a_{88})$, output $z = (z_{00}, \dots, z_{88})$

a even bits : $a_{00} \dots a_{36}$: $a_{2n} = z_{2n} \oplus z_n \oplus z_{n+70}$ $a_{38} \dots a_{74}$: $a_{2n} = z_{2n} \oplus z_n \oplus z_{n+51}$ $a_{76} \dots a_{88}$: $a_{2n} = z_{2n} \oplus z_n$ a odd bits : $a_{01} \dots a_{37}$: $a_{2n+1} = z_{2n+1} \oplus z_{n+45}$ $a_{39} \dots a_{87}$: $a_{2n+1} = z_{2n+1} \oplus z_{n+45} \oplus z_{n+26}$

- Compute odd $z_{01}...z_{19}$ directly
- Solve equations for other z_n:

$$\mathbf{a}_{01} = \mathbf{z}_{01} \oplus \mathbf{z}_{46} \qquad \Longrightarrow \qquad \mathbf{z}_{46} = \mathbf{a}_{01} \oplus \mathbf{z}_{01}$$

Gate-Depth Tradeoff

XOR Gates	Depth
3872	6
387	35 selected
287	65

- Developed special circuit with relatively small number of XOR gates (387) and depth (35)
- Faster with more gates, but traded speed for size

Hardware Architecture & Design

- Full VHDL implementation that can be targeted to FPGA or ASIC
 - Bottom up approach
- I/O Interface intended to be used as a memorymapped device
 - Hang off of microprocessor bus
 - 16-bit address bus
 - 8-bit data bus
 - Control Signals
 - Interrupt signals used to indicate signature status, error or signature completion

Hardware Architecture & Design

- Functionality
 - Signature, SHA-1 Hash Algorithm, Pseudo-random number generation
- Flexibility
 - Input message or hash of message
 - Input random per-message nonce, or seed for a pseudorandom nonce
 - Parameters: private key, generating point (Curve equation)
 - Output: signature, message hash, public key

Secure Signature Chip Design

Gate counts

- Chip: 191,000
 - Control: 27,000
 - SHA-1: 13,000
 - Remainder: 6,700
 - Signature Algorithm: 143,000
 - Control: 15,000
 - Multiply: 6,200
 - Remainder: 6,800
 - Point Multiplication: 112,000
 - Register & Control: 30,000
 - Point Addition: 52,000
 - Point Halving: 29,000

Power control in hardware design

- Clock gating
 - Inactive portion of chip turned off
 - Point halver
 - Point adder
 - Remainder
 - Multiplier
 - Finer granularity possible

Other Hardware Optimizations

- SHA-1 shift register to reduce area & power
- Radix 16 field multiplication
- Almost Inverse
 - Fast degree comparison
 - Fast radix 4 low-order 1 circuit
 - Fast radix 256 fix up step

Results

- Complete Register-Transfer-Level VHDL Design fully transferable
- Final Synthesized Gate Count: 191,000
- Signature Sign Time: 4.4ms at 20Mhz
 - Initialization 0.25 ms
- Nominal Operating Speed: 20Mhz
- Nominal conditions: CMOS library 5V, .5µm 25°C
- Power Estimation: 150mW while signing, 6uW while idle
- Improved performance with more advanced technology

Future Work

- Counter side channel attacks
- Improve worst case path (remainder)
- Additional improvements to point multiplication
- Verification algorithm
- Tech transfer: VHDL available
- More applications