Error Detection in Polynomial Basis Multipliers over Binary Extension Fields

Arash Reyhani-Masoleh

&

Anwar Hasan

Centre for Applied Cryptographic Research,
University of Waterloo, Waterloo, Ontario, Canada
E-mails: areyhani@math.uwaterloo.ca

&

ahasan@ece.uwaterloo.ca

Outline

- Introduction
- PB Representation and multiplication over $GF(2^m)$
- Error Detection Strategy
- Parity Prediction Functions
- Error Detection in Bit-Parallel PB multiplier
- Error Detection in Bit-Serial PB Multiplier
- Conclusions

Introduction

- Finite field multiplier (FFM) is time consuming and costly
- FFM is extensively used in many cryptosystems
- There are different types of bases: polynomial basis (PB), normal basis, dual Basis, triangular basis
- The importance of detecting errors in cryptographic computations has been pointed out in some recent articles
- Previous research [Fenn 98] addresses only special case of AOP

PB Representation over $GF(2^m)$

- Let $F(z) = z^m + \sum_{i=0}^{m-1} f_i z^i$ be a monic irreducible polynomial over GF(2)
- Let $\alpha \in GF(2^m)$ be a root of F(z), i.e., $F(\alpha) = 0$.
- Then $\{1, \alpha, \alpha^2, \cdots, \alpha^{m-1}\}$ is known as PB
- Each element $A \in GF(2^m)$ can be written as

$$A = \sum_{i=0}^{m-1} a_i \alpha^i, \ a_i \in \{0, 1\}.$$

Multiplication Using PB

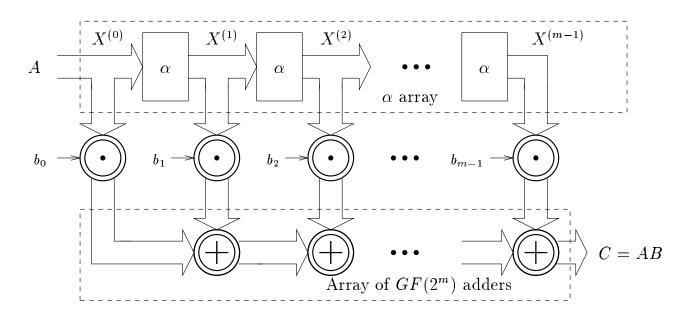
Let $A, B \in GF(2^m)$

$$C = A \cdot B \mod F(\alpha)$$

$$= \sum_{i=0}^{m-1} b_i \cdot ((A\alpha^i) \mod F(\alpha))$$

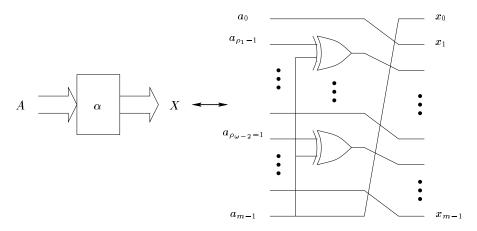
$$= \sum_{i=0}^{m-1} b_i \cdot X^{(i)},$$

where $X^{(i)} = \alpha \cdot X^{(i-1)} \mod F(\alpha)$, $1 \le i \le m-1$, $X^{(0)} = A$.

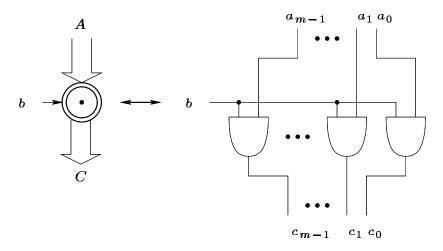


Three modules of the multiplier structure

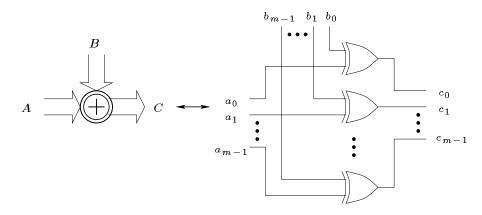
 $\bullet \alpha$ module



• Pass-thru module

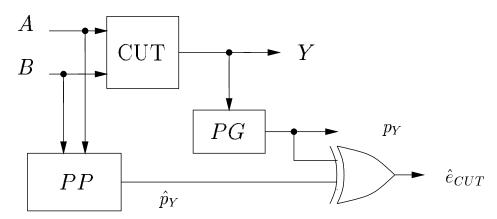


• Sum module



Error Detection Strategy

• Parity prediction (PP) method is used



- ullet PP block predicts the parity of Y using a PP function $\hat{p}_Y = \Gamma_{ ext{ iny CUT}}(A,B).$
- \bullet PG block generates the actual parity of Y, i.e.,

$$p_Y = \sum_{i=0}^{m-1} y_i$$

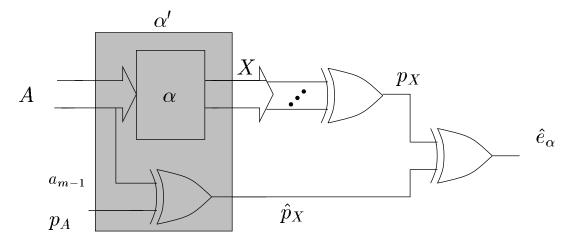
- p_Y and \hat{p}_Y are compared, $\hat{e}_{\text{\tiny CUT}} = \left\{ egin{array}{l} 1 & \text{if error} \\ 0 & \text{otherwise} \end{array} \right.$
- Assumptions:
 - $-p_A$ and p_B are available
 - PP and PG blocks can be made fault free or detectable
 - A single stuck at fault model is used

Parity Predictions of Individual Modules

• α module:

$$\hat{p}_X = \Gamma_\alpha = p_A + a_{m-1}$$

where $X \triangleq A \cdot \alpha \mod F(\alpha)$ is the output, $p_A \in GF(2)$



• Pass-thru module:

$$\hat{p}_G = \Gamma_{pass} = b \cdot p_A$$

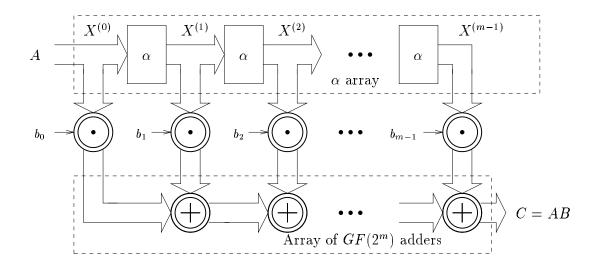
where G = bA, $b \in GF(2)$

• Sum module:

$$\hat{p}_D = \Gamma_{sum} = p_A + p_B$$

where D = A + B, and $p_A = \sum_{i=0}^{m-1} a_i$ is the parity bit for A

Parity Prediction of the PB multiplication



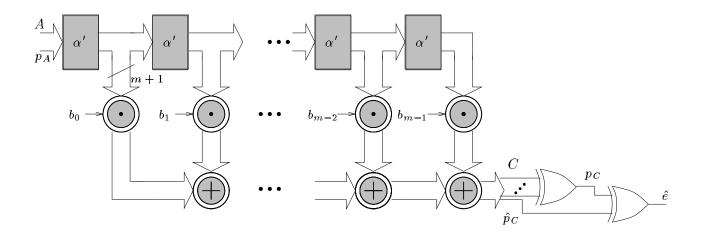
ullet Lemma: Let $x_{m-1}^{(j)}$ be the (m-1)-th coordinate of $X^{(j)}=Alpha^j \mod F(lpha)$

$$\hat{p}_{X^{(j)}} = p_A + \sum_{k=0}^{j-1} x_{m-1}^{(k)}, \qquad j = 1, 2, \dots, m-1.$$

• Theorem: Let C be the product of two arbitrary elements A and B of $GF(2^m)$. Then

$$\hat{p}_C = \sum_{j=0}^{m-1} b_j \hat{p}_{X^{(j)}}.$$

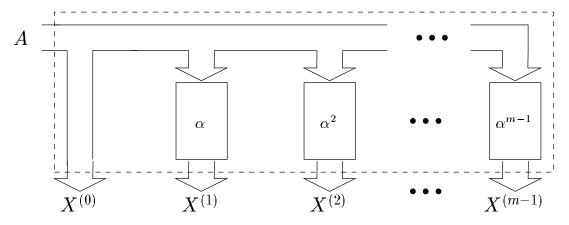
Error Detection in Bit-Parallel PB multiplier



- The output of any gate of the shaded pass-thru and sum modules in multiplier is connected to only one gate in the next stage
- The single stuck fault at any gate of two modules in multiplier changes only one coordinate of the output
- ullet This multiplier however cannot detect a single stuck-at fault in lpha modules
- To overcome this problem, two methods are proposed.

Error Detection in α Modules

ullet New architecture of lpha array



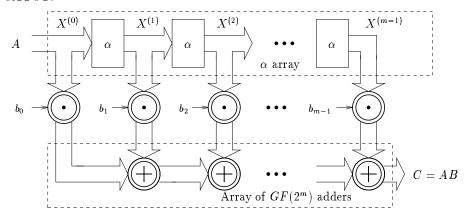
$$\mathbf{x}^{(i)} = \mathbf{G}^{i} \cdot \mathbf{a}, \ 1 \leq i \leq m-1, \text{ where } \mathbf{G} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & f_1 \\ 0 & 1 & \cdots & 0 & f_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & f_{m-1} \end{bmatrix}$$

• Error detection circuit of α array

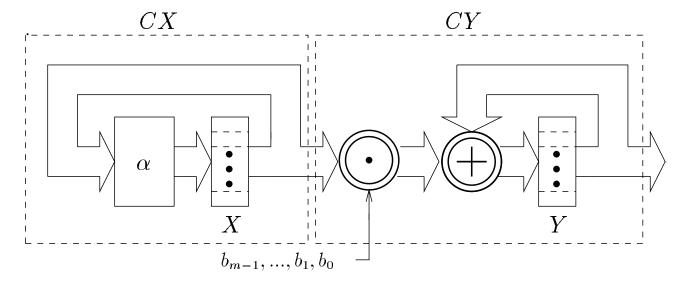
$$\hat{p}_{X^{(m-1)}} = p_A + \sum_{k=0}^{m-2} x_{m-1}^{(k)}.$$

Bit-Serial PB Multiplier

• Bit-Parallel:



• Bit-Serial:



•
$$X(0) = A, X(1) = X^{(1)} = \alpha A, X(m) = X^{(m)} = \alpha^m A$$

•
$$Y(0) = 0, Y(1) = b_0 A, \dots Y(m) = C = AB$$

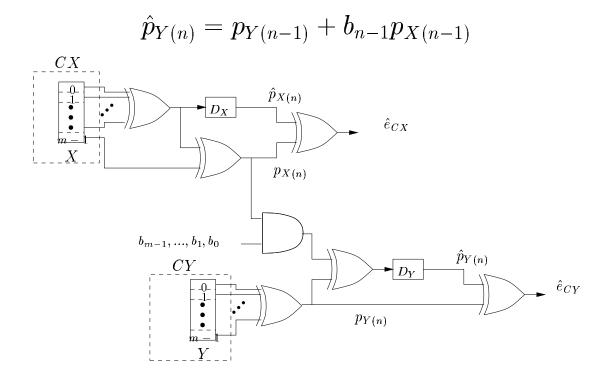
Error Detection in Bit-Serial PB Multiplier

- PP method is used to check the contents of two registers in every clock cycle.
- For CX block:

$$\hat{p}_{X(n)} = \sum_{i=0}^{m-2} x_i(n-1),$$

where $x_i(n-1) \in GF(2)$ is the *i*th coordinate of X(n-1).

 \bullet For CY block:



• If there are no odd number of errors, after the first clock cycle, both \hat{e}_{CX} and \hat{e}_{CY} should be 0.

Conclusions

- Error detection in PB multipliers are considered
- A single stuck-at fault model is used
- The parity prediction functions of the individual modules and whole multiplier are obtained
- The work presented here is generic
- The probability of error detection of our bit-serial multiplier is about 100%
- More research is needed to reduce the overhead cost of the proposed multiplier.