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ECC over GF(2")

 GF(2") operations implemented in HW
— Square, Multiply, Add
— Inversion with Fermat's little Theorem
— Polynomial Base

— Multiplier based on a novel, generalized version
of the Karatsuba Ofman Algorithm?

e EC level algorithms implemented in SW
— 2P Algorithm? for EC point multiplication
— Projective Point Coordinates

 Algorithmic flexibility combined with performance

[1] Karatsuba and Ofman, Multiplication of multidigit numbers on automata, 1963
[2] Lopez/Dahab, Fast multiplication on elliptic curves over GF(2m) without precomputations, 1999
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Reconfigurable System on Chip

e 8-Bit RISC Microcontroller



Atmel FPSLIC

Reconfigurable System on Chip
e 8-Bit RISC Microcontroller

- FPGA

* 40k Gate Equivalents

e Distributed
FreeRAM™ Cells



Atmel FPSLIC

Reconfigurable System on Chip
e 8-Bit RISC Microcontroller

- FPGA

« 36 kByte RAM
* Dual Ported

» Simultaneously
accessible by MCU
and FPGA
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Atmel FPSLIC

Reconfigurable System on Chip
e 8-Bit RISC Microcontroller

e FPGA
» 36 kByte RAM
e Peripherals

e Low cost, low
complexity
device




Polynomial Karatsuba Multiplication
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Multi-Segment Karatsuba (MSK)

» Generalization of the Karatsuba Multiplication Algorithm

» Polynomials are split into an arbitrary number of segments

MK, (AB)= 18 ,(AB) X [DE S, (AB) X
with

Su(AB) =[S, (ABD S, (AB) M, (AB),

S,I (AB) = M, (AB) and M (AB)= %J’Ir[:!‘lA Hﬂfr[nl-l .



MSK, for k=3
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Reordering of Partial Products

1) Pattern Grouping xR R K

w T W

2) Reorder pattern by decreasing x"

3) Minimize differences in the set of
Indices of adjacent pattern &




Pattern Grouping
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Pattern Grouping

1.) Grouping the partial products to one of three possible pattern

BB R R

(8RR




Pattern Grouping

1.) Grouping the partial products to one of three possible pattern
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Pattern Grouping

1.) Grouping the partial products to one of three possible pattern
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Pattern Grouping

1.) Grouping the partial products to one of three possible pattern

X X x SO0 $4 $3 g2 g1 oo

X X X X X X
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1) Pattern Grouping R RRR
2) Reorder pattern by decreasing x"

3) Minimize differences in the set of
Indices of adjacent pattern &




Reordering of Partial Products

2.) Ordering of the pattern in a top-left to bottom-right fashion

BB R R




Reordering of Partial Products

2.) Ordering of the pattern in a top-left to bottom-right fashion
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Reordering of Partial Products

XX R KX

w T W

3) Minimize differences in the set of
Indices of adjacent pattern D




Reordering of Partial Products

3.) Ensuring that the set of added up segments in the partial
products differs only by one element between two
adjacent patterns

BB R R




Reordering of Partial Products

3.) Ensuring that the set of added up segments in the partial
products differs only by one element between two
adjacent patterns

BB R R




) Multiplication Sequence
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Multiplication Sequence

>A2 Al Ao >Bz Bl Bo
A5 84 83 82 o1 &0
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> Clock Cycle: 1




Multiplication Sequence

>A2 Al AO >BZ

By | By
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Clock Cycle: 2



Multiplication Sequence
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Multiplication Sequence
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Multiplication Sequence
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Multiplication Sequence
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Multiplication Sequence
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Multiplication Sequence

>A2 Al AO >BZ Bl BO

B3R R

> Clock Cycle: 8




=k Coprocessor Interface

AVR FPGA
Finite Field Arithmetic

MULT
ADD
SQUARE

B V4

Controller




Results

Prototype Implementation:

« 5-Segment Karatsuba (MSK;)

» 23-Bit combinational Multiplier

o GF(2113)
FF-Level Clock Cycles Operation | Clock Cycles
Operation | best case |worst case
FF-Mult 32 152 | | EC-Double 493
FF-Add 16 136| | EC-Add 615
FF-Square 1 91| [k-P 130,200

 One EC point multiplication takes 10.9 ms @ 12 MHz

» Speed-up factor of about 40 compared to an assembler

optimized software implementation




