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■ Differential Power Analysis (DPA)
■ Random Masking
■ Higher-Order DPA
■ Multiplicative Masking for AES
■ Security Flaw of the Method
■ DPA Attack
■ Remedy Seems Impossible
■ Embedded Multiplicative Masking

◆ Overview of Countermeasure
◆ Efficient Implementation
◆ Security Analysis
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■ About power curves
◆ It is criticalcritical if they contain information about secret key in 

such a way that divide-and-conquer reconstruction 
attacks on parts of the secret key are feasible

■ Differential power analysis (DPA) [Kocher et al. 99]        
is a powerful technique which

◆ reconstructs the secret key in a divide-and-conquer 
manner

◆ uses simple mathematical tools and 
◆ is practically independent on particular implementation
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■ Fundamental hypothesis for DPA
◆ In the secret key algorithm, there exist intermediate 

variables that can be expressed as or are correlated 
to functions depending on a small number of key bits 
and on known input or output data 

■ Basic idea
◆ Guess the involved key bits and partition measured 

power curves according to the computed value of 
the targeted intermediate variable

◆ Compare average curves and decide on the guess 
giving rise to significant differences, peaks, at one or 
more points in time

◆ Works if power consumption is not balanced, 
because of the same value being computed at the 
same time for the partitioned curves
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■ Random masks

◆ Randomize computations and hence balance power 
consumption

◆ For block ciphers, first few and last few rounds are 
critical (fundamental hypothesis)

◆ When applied to affine operations, only additive 
constants have to be changed

◆ When applied to nonlinear operations, these 
operations typically have to be recomputed for each 
new mask; for example, for an S-box

✔ a look-up table has to be stored in RAM instead of ROM
✔ this is very costly for limited-space applications (smart cards)
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■ Power curves are analyzed by using a joint 
statistic applied to a number of points in time

◆ For example, for the second-order DPA, one can use 
variance of the difference  [Messerges 00]

◆ The attack is more complicated as suitable time points 
have to be identified

■ Intermediate variables satisfying the fundamental 
hypothesis and being masked by the same mask 
are vulnerable to the second-order DPA
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■ Akkar and Giraud at CHES 2001 observed that  
nonlinear parts of S-boxes in AES (Rijndael), 
performing the multiplicative inversion in GF(256), 
can be randomized by multiplicative masking, 
without having to recompute and store them in 
RAM

■ They also proposed to mask every round of AES and to 
use an extra binary additive mask, fixed for each round

■ To this end, they proposed a secure method for the 
conversion between additive and multiplicative masks

■ Claim:  method should be secure against DPA
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■ ByteSub transformation without masking

■ ByteSub transformation with masking

(round index    , byte index    )    

■ Note that addition in GF(256) is the same as 
bitwise XOR

i j
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Fig. 3.  Modified inversion

0≠jiY ,
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■■ ProblemProblem:
Multiplicative mask only masks non-zero data 
values, i.e., zero data value is not affected by 
masking, both at the input and the output of 
the multiplicative inversion 

■■ As a consequence, the method is vulnerable to As a consequence, the method is vulnerable to 
the 1the 1stst order DPAorder DPA

000 =⊗⇒=⊗⇒= −1
,,,,, )( jijijijiji YAYAA
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■ Note that                             where          is the 
data byte

■ Objective is to recover the secret key used at the 
input to the 1st round,  8 bits at a time

■ To perform the 1st order DPA , collect       power 
curves corresponding to the same secret key

■ Guess 8 key bits and extract about              
power curves for which the corresponding data 
bits are equal to the key bits

◆ for a correct guess,            

jijiji KDA ,,, ⊕=

N

N

256/N

jiD ,

0=jiA ,
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■ Compute the averages of these               power 
curves and of all       power curves

■ If the guess is correct and if                is large 
enough, there will be peaks in the difference 
between the two average curves

■ In a sense, the DPA attack works better than 
without masking, because of randomization effect 
provided by multiplicative mask, when the guess 
is incorrect

■ However, without masking, one may also use 
partial output values of S-boxes for partitioning the 
power curves

256/N
N

256/N
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■ To remedy the weakness, one may try to replace the 

modified inversion computation on the zero input  value         
by the computation on some other, random non-zero 
value

■ This will balance the computation if
■ However, it is then necessary to

◆ Perform computation to detect if
◆ Replace the computed output value 

■ Both computations  necessarily depend on input data 
and are hence vulnerable to the 1st order DPA

■■ The point is that multiplicative masking does not The point is that multiplicative masking does not 
cover the whole range of input values! cover the whole range of input values! 

jiA ,

0=jiA ,

0=jiA ,
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■■ In conclusion, the multiplicative masking method In conclusion, the multiplicative masking method 
is inherently vulnerable to the 1is inherently vulnerable to the 1stst order DPAorder DPA

■ It will be practically very important, especially 
for hardware implementations, to find a 
random masking method for AES that will not 
require recomputation and RAM storage of S-
boxes

■ To this end, one should find (quasi)group 
operations for masking the input and output of an 
S-box that are compatible with the S-box 
nonlinear transformation, i.e., multiplicative 
inversion in GF(256)

■ This does not appear to be likely
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■ Instead of an ideal solution to the problem, we 
provide an approximate solution, with a 
controllable security level

■ The main idea is to randomly embed GF(256) 
into a larger algebraic structure so that

◆ the zero value is mapped into a set of values
◆ the operations remain compatible with GF(256) so as 

to avoid recomputation and RAM storage of S-boxes
◆ the multiplicative masks are used in essentially the 

same way as in  [Akkar, Giraud 01]
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■ Let      and       be any two mutually coprime irreducible 
binary polynomials, where                   and                 

■ GF(256) can be represented as the ring of binary 
polynomials modulo      

■ GF(256) is a subring of the ring of binary polynomials 
modulo         ,                                 ,  which itself is 
isomorphic to                               with the isomorphism

,  where                          and     
■ We will use the random mapping                                  

where       is a random binary polynomial,    

P Q
8deg =P kQ =deg

P

PQ /(PQ)][GF(256) x=R
)2(GF)256(GF k×

),( QP UUU � PUU P mod= QUUQ mod=
R→)256(GF:ρ

R kR <deg
RPUUU +=)(ρ�
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■ Embedded multiplicative masking method:
◆ Map the input                  on Fig. 3  by       into      

(here      acts as a    -bit embedding mask) 
◆ Along the data path, the first multiplication and two 

additions are computed modulo        and the inversion is 
replaced by the mapping                      over       which on
GF(256) coincides with the inversion 

◆ All other operations remain the same as in the original 
multiplicative masking method

■ The zero value is mapped onto      different values 
and should be more difficult to detect as    , the 
security parameter, increases  

jji XA ⊕,
ρ R

R k

PQ
254)( UUF =′

k2
k

R



September 8, 2002 J. Golic and C. Tymen

Slide #19

(PEHGGHG�0XOWLSOLFDWLYH�0DVNLQJ(PEHGGHG�0XOWLSOLFDWLYH�0DVNLQJ
(IILFLHQW�,PSOHPHQWDWLRQ(IILFLHQW�,PSOHPHQWDWLRQ

■ Function       should be implemented securely

■ The look-up table, in ROM, is impractical for        
■ We propose the ‘square-and-multiply’ method based on 

the specific choice of polynomials     and      so that 
multiplication and squaring are easy 

■ More precisely, we choose the polynomials satisfying

and multiplication and squaring modulo           are very easy  

(Check the paper for more details!)

F ′
8≥k

P Q

)()()1(1 17 xQxPxx +=+
171 x+
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■ As      is different from that of AES, the conversion 
between the coordinates is performed by two         
binary matrices, one of which is incorporated into 
ByteSub

■ Complexity of computing       is about 21 16-bit 
operations, as opposed to GCD-based algorithms 
which require at least about 100 16-bit operations

■ Suitable for software implementations on 16-bit 
microprocessors and for hardware implementations

P
88×

F ′
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■ The average Hamming weight of 25 16-bit values involved 
in computing       is obtained by computer simulations

■ The maximum observed difference between the zero and 
nonzero cases is about  8.5% (8.596 versus 7.929)

◆ without embedding, the difference is  0 versus 4 (for 8-bit values)

■ To increase resistance against higher-order DPA,
◆ use mutually independent random masks (additive, 

multiplicative, and embedding), especially in the first and 
the last round of AES

◆ use mutually independent random additive masks at the 
input and the output of one round (on Fig. 3)

◆ randomize the order of S-box computations in a round

F ′


