Viktor Fischer

Université Jean Monnet, Saint-Etienne, France fischer@univ-st-etienne.fr

Miloš Drutarovský Technical University of Košice, Slovakia

Milos, Drutarovsky@tuke.sk

True Random Number Generator Embedded in Reconfigurable Hardware

Introduction

Motivation

Offering

Problem

CHES 2002

 Embedded cryptographic system in reconfigurable hardware - system in a programmable chip (SOPC) solution

Higher security
Lower price
Adaptability

 Missing cryptographic primitive in programmable logic applications - True Random Number Generator (TRNG)

Source of randomness

Problem Field Programmable Logic Device (FPLD) - suitable especially for pseudo-random number generators (logic circuitry), usually the source of randomness is missing

Solution Analog part of recent FPLD - a PLL used usually for the clock synthesis - introduces very small random jitter

Jitter parameters

Analog PLL in Altera FPLD

- Analog PLL with high multiplication and division

Voltage-Controlled

Oscillator

ClockShift

Circuitry

 $F_{\text{OUT1}} = F_{\text{IN}} \left(\frac{m}{n \times k} \right)$

 $F_{\text{OUT2}} = F_{\text{IN}} \left(\frac{m}{n \times v} \right)$

:k

:v

Phase

Comparator

:m

factors (up to 160)

Input Clock

F_{IN}

:n

- Used for high-speed clock generation (typically up to 200 MHz)
- Instability reduced to a minimum clock jitter **1-sigma value:** ~ 15 ps (very good for a clock synthesis, less good for a TRNG implementation)

TRNG principle

Principle

 Summation modulo 2 of the synthesized clock signal (CLJ) sampled in the fixed clock intervals (CLK) during the period T₀

• If $F_{CLJ} = F_{CLK} K_M / K_D$ and K_M and K_D are relative primes

then

 $\mathbf{T}_{\mathbf{Q}} = \mathbf{K}_{\mathbf{D}} \, \mathbf{T}_{\mathbf{CLK}} = \mathbf{K}_{\mathbf{M}} \, \mathbf{T}_{\mathbf{CLJ}}$

Example sholo end to sholo end to shold end

$K_{MI} = 5$ $K_D = 7$ $F_{CLJ} < F_{CLK}$

CLK

CLJ

Q

Note

Sampling of the signal CLJ in K_D discrete positions (phases)

 $T_{\rm O}$

<u>1 5 1 1 2 4</u>

 $\Delta T = 2MAX(\Delta T_{min})$

Critical samples

0

 $\Delta T_{\min} = 0$

Condition for the jitter detection

$\sigma_{jit} > T_{CLJ} / 4 K_D = T_{CLK} / 4 K_M$

TRNG realization

XOR corrector

XOR decimator

 Increases the probability of CLK and CLJ edge zones overlapping during the T_Q period

- Removes deterministic part of the signal with the $T_{\bar{Q}}$ period

enswonst.

eniteet inemqittpe

Altera NIOS development board based on APEX20K200-2X device

PLLs configuration

Parameters • $K_M = 785$, $K_D = 1272$, $T_{CLK}/4K_M = 7.2 \text{ ps} < \sigma_{jit}$

Implemented • TRNG

blocks • 4 kB FIFO and I/O control logic

ersworst noitstnemelqmf

Description kinguage

Difficulties

Development tools

Requirements

• AHDL • VHDL

• Simulation of the jitter and simulation of the TRNG performance is impossible

 Placement and routing results are very important

• Quartus II, version 2.0

	TRNG only				TRNG + FIFO			
Device	LCs	LCs	ESBs	ESBs	LCs	LCs	ESBs	ESBs
	#	%	#	%	#	%	#	%
EP20K200EFC484-2X	48	0.6	0	0	121	1.5	4	7.7

Tests results Mean values for

1-Gigabit records

Conclusion

NIST test suite

Conclusion

and the second second second	the state of a state of the sta	and the second part of the second sec	The states - bandon part - the	Service and the service of the	the states through the
Record	1	2	3	4	5
Board	Α	B	B	B	B
Mean	0.500001	0.500109	0.500001	0.50012	0.5001

For very long records some small bias can be noticed, this bias should be negligible for cryptographic applications and it can be further reduced

Frequency, Block-Freq., Cusum, Runs, Long-Run, Rank, FFT, Periodic-Template, Universal, Apen, Serial, Lempel-Ziv, Linear-Complexity

All the tests have passed with some small deviation for some FFT tests

Conclusions

CHES 2002

We have proposed a new method for the true random number generator implementation in reconfigurable hardware:

- the principle of randomness extraction is very reliable (independ on voltage and temperature fluctuation)
- since no external component is needed, it seems to be very difficult to manipulate the generator output values
- the principle is adaptable to all devices using analog PLL with sufficiently high K_M and K_D and relatively high jitter (all recent Altera FPLDs, some other FPLDs, ASICs, etc.)

Perspectives

- Intensive testing in cooperation with other (specialized) organizations
- Improvement of the characteristics of the XOR corrector to reduce the bias
- Exact measurement of the jitter in different conditions
- Design of the complete IP block including on-line FIPS tests
- Improvement of the strategy of the choice of multiplication and division factors

