
Experience Using a Low-Cost
FGPA Design to Crack DES Keys

Michael Bond &
Richard Clayton

&+(6�:RUNVKRS

��WK�$XJXVW�����

Contents

• Attacks on the IBM 4758 CCA

• Attack optimisation

• History of H/W crackers

• The low-cost hardware “DES cracker”

• DES cracker design issues

• Results and responses

Last Year at CHES …

• Attacks on IBM 4758 Common Cryptographic
Architecture, used in retail banking to protect
customer PINs and ATM infrastucture

• Flaws identified
– Poor control of integrity on key entry

– Meet-in-the-middle attack on DES

– 3DES Key binding problem

Key Entry under CCA

• Used for transferring top-level encryption keys
between banks

• Each key is split into several parts, transferred by
separate couriers

• Security Officers at destination receive one part
each, and enter them into the 4758

• The parts are recombined using XOR
• Problem : any of the security officers can modify

the key value (though all must collude to discover
it)

Example Roles

Can modify key

Can complete key load

Can check key integrity

Cannot discover key value

Combine_Key_Parts

Key_Test

Security Officer 3

Can modify key

Can complete key load

Cannot discover key value

Combine_Key_PartsSecurity Officer 2

Can modify key

Can start key load

Cannot discover key value

Load_First_Key_PartSecurity Officer 1

AbilitiesCCA PermissionsRole

The Meet-in-the-Middle Attack

Idea: Attack multiple keys in parallel

• Encrypt the same plaintext under each of
the multiple keys to get a “test vector”

• Attack by trying all keys in sequence but
check for a match against any test vector
value (check is faster than encrypt)

• Typical case: A 256 search for one key
becomes a 242 search for 214 keys

3DES Key Binding

A A

X Y

A A B B

A B

A Single Length Key

Double Length “Replicate”

Double Length

Implementing the Attack

• Naïve implementation of attack requires 3 sessions
of access to 4758, and three DES cracks. Total
time ~3.5 weeks

• Our aims
– Require only a single session of access < 30 mins
– Have the cracking complete within a long weekend

• Our solution
– Restructure and optimise attack code
– Use hardware to assist in the cracking

Original Attack : Stage 1

CCA Cmd
Encrypt

DES
Cracker

000000

{ key D1..n}Km
{ 000000 }key D1..n

{ 000000 }key D1..n

000000

key D117

Wait ~1 week

Original Attack : Stage 2

CCA Cmd
Export

DES
Cracker

key D117

{ key D117}Km
{ key D117 }key E1..n

{ key D117 }key F1..n

{ key E1..N }Km

key E22,E46

Wait ~2 weeks

Two keys reqd
to swap halves

Original Attack : Stage 3

CCA Cmd
Export

Decrypt
key E

{ $$$$$ }Km
{ $$$$$ }key E22/46

{ $$$$$ }key E22/46

$$$$$

{ key E22/46 }Km

First, swap halves of keys E22 & E46

CCA Cmd
Encrypt

CCA Cmd
Export

000000
Test Pattern

Related Test
Data Key Set

Particular
Data Key as
Test Pattern

Exporter Key
Test Vectors

Data Key
Test Vectors

Related Test
Exporter Key Set

CCA Cmd
Export

Particular
Exporter Key as

Test Pattern

Encrypted Valuable
Key Material

Valuable Key
Material

Decrypt

Key_Part_Import

Hardware
DES Cracker

Hardware
DES Cracker

Key_Part_Import
Encrypted Valuable

Key Material

Wait ~24 hrs Wait ~24 hrs

CCA Cmd
Encrypt

CCA Cmd
Export

000000
Test Pattern

Related Test
Data Key Set

Particular
Data Key as
Test Pattern

Exporter Key
Test Vectors

Data Key
Test Vectors

Related Test
Exporter Key Set

CCA Cmd
Export

Particular
Exporter Key as

Test Pattern

Encrypted Valuable
Key Material

Valuable Key
Material

Decrypt

Key_Part_Import

Hardware
DES Cracker

Hardware
DES Cracker

Key_Part_Import
Encrypted Valuable

Key Material

Wait ~24 hrs Wait ~24 hrs

Finishing off

• Download lists of account numbers and PIN
offsets

• Use magnetic stripe writer to create cards

• Use any ATM to extract money from accounts

• Go to Bermuda!

Next : design of cracker

Predicting Brute Force of DES

• Diffie/Hellman 1977 $20M for 1 key/day

• Jueneman 1980 : by 1985 $10M for 2 secs

• Hoornaert 1984 : $1M for 4 weeks

• Desmedt 1987 : $3M for 4 weeks
(as Hoornaert but 1M keys in parallel)

• Wiener 1993 : <$1M for 1 key/3 hours

The EFF Machine (1998)

• 1 unit tests 1 key in 16 clocks @40 MHz

• 24 units/ASIC

• 64 ASICs/board

• 12 boards/chassis, 2 chassis = 1 machine

• Looking for “known plaintext”

• Full 256 search takes 9 days

• $210,000 – of which $80,000 was chips

RSA Challenges

• June 97 : 96 days (25% of space)
DESCHALL – peak day: 232 keys/sec

• February 98 : 41 days (90% of space)
Distributed Net – peak day: 236 keys/sec

• July 98: 56 hours (27% of space)
EFF “Deep Crack” – 236.5 keys/sec

• January 99 : 22 hours (25% of space)
Distributed Net + EFF – reached 237.8 keys/sec

Later Machines

• Transmogrifier 2a (Univ. Toronto) 1999
– 32 * Altera 10K100 FPGAs + glue!

– 25MHz

– 229.6 keys/sec : ie 2.85 years/key

– $30K cost (estimated – chips were free!)

– For $210K they estimate 8X EFF speed

• Not many more actually built !

Recent Estimates

Blaze, Diffie, Rivest, Schneier, Shimomura,
Thompson & Wiener (Jan 1996)
• Surveyed software & FPGA solutions

– 40 bit keys – one week in software
– $400 FPGA – 5 hours / 40 bit key = $0.08/key
– Assumed 60MHz pipeline in the FPGA

• Recommended 90 bits as safe for 20 years
even when targeted by major governments

Our Low-cost DES Cracker (2001)

• $995 Excalibur kit (Altera 20K200 FPGA)
– chip cost is ~$5 (in volume; $178 one-off)

• 33MHz pipeline (& 60MHz possible)

• 225 keys/second
– 56 bit DES = 68 years

• However.. it looks for 16K keys in parallel
– with average luck find first key in 25.4 hours

Design Overview

PC Client

UART

16-Bit NIOS
Microprocessor

I/O
Instruction
Decoder

DES Pipeline

External
RAM

Test Vectors

The DES Engine

 Stage 0

Stage 1

Check Bits 63..32

Check Bits 31..0

Result

Stage 15C+15

C+1

C

C+16

C+17

C+18

Test Pattern

......
Pipelined
DES Rounds

Pipelined
RAM Lookup

Pipeline Counter

A DES Pipeline Stage

RN

E

S-Boxes

P

RN+1

LN

LN+1

Key N

Shift & Shuffle

Feeding in Subkeys

Fitting the Design Onto the Chip

Max of 8320 LUTs … and using all except 17

• LFSR saves pipelining key values

• Careful attention to instruction decoder

• Minimal settings for NIOS processor

• Redesigned S-Boxes

A5 A4 A3 A2 A5 A4 A3 A2 A5 A4 A3 A2A5 A4 A3 A2

 A1 A0A1 A0

Can always achieve:
 6 LUTs / bit
 => 24 LUTs/S-Box

Straightforward S-Box Design

Some S-Boxes Have Structure

• SBOX4 : address : 543210 : 4 bit result =
 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14.

• Rearrange addressing in order 532104
 7, 14, 0, 9, 1, 8, 11, 4, 10, 9, 12, 7, 15, 3, 5, 8,
13, 11, 6, 0, 4, 2, 1, 14, 3, 0, 10, 13, 9, 5, 12, 2,
13, 3, 6, 10, 2, 5, 12, 15, 6, 0, 11, 13, 1, 14, 2, 4,
 8, 5, 15, 3, 7, 12, 10, 9, 15, 6, 1, 8, 4, 11, 7, 14.

and then feed it into the logic minimiser...

S-Box Savings

• S-Box 4 uses just 16 LUTs, not 24

• We tried all possible addressing permutations
and got savings also on:

S-Box 2 23
S-Box 3 23
S-Box 7 23
S-Box 8 22

• total 13 LUTs saved per stage
* 16 stages = 208

Pipelining vs. Looping

• We considered a looped architecture as
well as the pipelined version.

– Pipelined 8303

– Looped 11162 ~30% larger

• Looping pros
– easier to get right (EFF machine)

– easy to cash in speed for space

• Pipelining pros
– space efficiency

Results

• Implementation complete October 2001

• 4 full attack runs
– 5hrs, 12hrs, 19hrs, 22hrs to find first key

• Informed IBM both when theory discovered, and
when implementation complete – little response

• Media publicity in November 2001

• Initially – denial

• One week later – warning about Key_Part_Import

• February 2002, new CCA version 2.41 with fixes

Conclusions

• There is value in implementing attacks “for real”

– Problem with Key_Part_Import would never have
been spotted

– IBM might never have fixed the flaws

– A lot learned about FPGAs as attack tools in general

Make Your Own!

http://buy.altera.com/ecommerce/dkc.html

Publicity website, including source files…

http://www.cl.cam.ac.uk/~rnc1/descrack

Academic Papers

http://www.cl.cam.ac.uk/~mkb23/research.html

