Efficient Software
Implementation of AES
on 32-bit Platforms

Guido Bertoni, Luca Breveglieri
&3] Politecnico di Milano, Milano - Italy

Pasqualina “Lilli” Fragneto @/

AST-LAB of ST Microelectronics, Agrate B. - Italy

. Marco Macchetti, Stefano Marchesin
"'ALARI - Universita della Svizzera Italiana, Lugano - Switzerland

Table of Contents

= Introduction

m Short description of AES

m Optimisation of the algorithm
m Simulation results

m Conclusions

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 1/23

Introduction

= A work for the efficient software
Implementation of AES.

m Optimised software implementation (in C)
oriented to 32-bit platforms with low memory “
(e.g. embedded systems).

= Evaluation of the time performances on
various platforms: ARM, ST and Pentium.

m Comparison with the time performances of
Gladman’s C code.

HThe usage of look-up tables is limited: only the S-BOX and the
Inverse S-BOX transformations are tabularised (2 x 256 bytes).

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 2/ 23

Algorithm Description - General

Rijndael is the selected (NIST competition) algorithm for
AES (Advanced Encryption Standard).

It is a block cipher algorithm, operating on blocks of data.
It needs a secret key, which is another block of data.

Performs encryption and the inverse operation,
decryption (using the same secret key).

It reads an entire block of data, processes it in rounds
and then outputs the encrypted (or decrypted) data.

Each round is a sequence of four inner transformations.

The AES standard specifies 128-bit data blocks and 128-
bit, 192-bit or 256-bit secret keys.

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 3 /23

Algorithm Description — Encrypt.

encryption structure of a
sLanText algorithm generic round

l SECRET KEY INPUT DATA

ROUND KEY 0

ROUND 0 v

¢ SUBBYTES

ROUND KEY 1
ROUND 1 v

v v SHIFTROWS

eccccccce SCHEDULE ¢

¢ MIXCOLUMNS
ROUND KEY 9 ¢

ROUND 9
ROUND KEY
¢ ADDROUNDKEY
ROUND KEY 10

ROUND 10
¢ \ 4

OUTPUT DATA
ENCRYPTED DATA

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 4 /23

Algorithm Description — Encrypt.

SubBytes

Se one
byte
State array

ShiftRows rotation of
state array

1 byte
———»

2 bytes
————»

3 bytes
—————»

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 5/23

Algorithm Description — Encrypt.

MixColumns coeff.s matrix state array

02 03 0l O1[]
%)1 02 03 015
™1 01 02 030

03 01 01 02

_ : o polynomial
field GF(2°) DIEWISEPAOIS multiplications

AddRoundKey state array round key

0 s | Ke
k

9

D

Ko
k

11

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 6 /23

Optimisation — The Idea

= To Improve the time performances of AES,
a transposed state array has been used.

State transposed State

S8 S12 SZ s3

Sg | Si3 Sg¢ | Sy

S10 S14 S10 Sll

S11 S15 S12 Sl3 Sl4 S15

m Very simple idea, but yields interesting
consequences!

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 7 /23

Optimisation - Consequences

= The following round transformations are
essentially invariant with respect to

transposition (and their speed is unchanged):

s SubBytes
= ShiftRows
= AddRoundKey (but the round keys must be transposed)

m Instead, the MixColumns transformation must
be completely restructured.

® The new MixColumns is considerably
sped-up by the transposition of the state.

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 8 /23

Old MixColumns

= It is a matricial product (in GF(2°)):

.0 02 03 01 010

: [] []
Mix Column number ¢ c = 02 03 Olm%,cm

| 0L 02 0303,
(0<sc<3) , 020
01 01 02Hs,.F

m In C language a macro Is used:

state column

fwd_ntol (x)
(f2 = FFmul X(x), f27upr (x~f2,3) upr(x,2)*upr(x,1))

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 9/ 23

ld MixColumns - Cost

O

oot

(@)
(@]

I3
)
I3

Pl

)
O
O
I3

)

] mlofml
10 |:||:|:|T|:||:|
O 0
C 10 |:||:|:|T|:||:|
s ml=tale
10 |:||:|:|T|:||:|

O
g
[Pre [
O
%’CD
(5 [

The cost per column is: a single “doubling”, 4 additions (XOR) and 3
rotations (all operations work on 32 bits).

For a complete MixColumns transformation 4 “doublings”, 16 additions
(XOR) and 12 rotations are required.

“doubling” means 4 multiplications in GF(28) of each byte of the 32-bit
word.

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 10/ 23

New MixColumns

02 01[]

i
%)1 01~
D1 030

03 02F

Sg | S — [02 Ol] %

Transposition is equivalent to processing the state array
by rows, instead of processing it by columns!

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 11/23

New MixColumns

The New MixColumns transformation is:

Yo= (102} * Xp) + ({03} * X)) + X, +Xg
Y1 =X+ ({02} ¢ X)) + ({103} + X,) + X4
Y, = Xo + X + (102} + X)) + ({03} * X))

Y3 = (103} Xp) + X, + X, + (102} * X;)

The symbols x, and y. (0 < | < 3) indicate the 32-bit rows of the
state array before and after New MixColumns, respectively.

The 32-bit word x. accommodates 4 bytes coming from 4
different columns (and similarly for y.).

The operation {02} « x. or “doublings” consists of 4
multiplications in GF(28) of each byte of the 32bits word.

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 12/ 23

New MixColumns

m [he transformation
can be executed In
three steps.

as a sort of “double
and add” algorithm.

Remainder: 03 01 010

02
%)1 02 03 015
M1 01 02 030

03 0L 01 02

08/09/2002

It can be concelved

CHES 2002 Workshop — Redwood City (SF Bay), CA, USA

Yo= Xy T X5 ¥ X5
Y1= X T X5 T X3
Yo = Xp T X1 X3
Y3 = Xo T X1 X,

Xq =102} * X,

X, = {02} X;

X, = {02} X,

X3 =102} ¢ X,
Yo1=Xp + X4
Y11= X X
Yo =X, + X3
Y3 1= X3 T X

pp. 13 /23

MixColumns — Cost Comparison

m The standard implementation of MixColumns
requires:
= 4 “doublings”,
= 16 XOR’s and 12 rotations,
= and one intermediate variable
= The “transposed” version of MixColumns
reguires:
= 4 “doublings’,
= 16 XOR’s and NO rotation,
= and NO intermediate variable.

m Software time performances should improve!

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 14/ 23

Decryption

Decryption uses the InvMixColumns
transformation — inverse of MixColumns.

Also InvMixColumns can be sped-up by the
transposition of the state array.

Transposition yields a higher speed-up for
InvMixColumns than for MixColumns.

This is due to the complex structure of the
coefficient matrix of InvMixColumns.

Mixcolumns’ coeff.s: 01, 02 and 03 (hex).
m InvMixColumns’ coeff.s: 09, Ob, Od and Oe (hex).

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 15/ 23

Old InvMixColumns

Ob O0d 09
Oe Ob Od
09 0Oe Ob

,C ,C

ji,c

,C

,C

,C

B3

m The entries of the coefficient matrix of
InvMixColumns contain a larger number of 1's
than those of MixColumns.

m [ransposition exposes more parallelism and
hence yields a significant speed-up.

b 0d 09 Oe

,C

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 16/ 23

New InvMixColumns

S | S4 | Ss|Se| = [0oe Ob od 09] ®

Reminder:
O, =1110, Yo= X X+ X,
Ob,, =1011, Xo = {02} * (X5 + X))

X, = {02} * X oot
Odhex =1101 b Xi) — {02} " XZ Xl {02} (Xl t X3)
09

hex = 1001, X2:{02}°X2
X3 =102} * X,

hex

Yo T= X

Xq =102} * (X, + X,)
Yo =Xy T X4

Yo T= X

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 17/ 23

InvMIixColumns — Cost Comparison

m [he standard algorithm requires:
= 12 “doublings’,
= 32 XOR’s and 12 rotations,
= and 4 intermediate variables.

= The “transposed” algorithm requires only:
= / “doublings’,
m 27 XOR’s and NO rotation,
= and NO intermediate variable.

m Software time performances should improve!

m But time performances should improve In
hardware as well!

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 18/ 23

Time Performances

m The time performances of the proposed algorithm

have been tested on some 32-bit CPU’s:
= ARM 7 TDMI and ARM 9 TDMI, typical microcontrollers

m ST 22, a CPU designed for smart card (by STM)
= and PENTIUM lll, a general purpose CPU

m The time performances are computed in CPU
cycles, and are compared with those of
Gladman’s C code.

® Where Gladman is better, it is due to the time
overhead required to transpose input and output
data, to remain compliant with the standard.

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 19/23

Results (ARM)

Key

Jersior Schedule

Encryption | Decryption

Transposed 634 1675 2074

Gladman 449 1641 2763

Transposed 499 1384 1764
ARM 9

TDMI

Gladman 333 1374 2439

Simulations have been executed by means of the ARM Development Suite ADS 1.1.

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 20/ 23

Results (ST 22 and P ll)

Version

Key
Schedule

Encryption

Decryption

Transposed

0.22

0.51

0.60

Gladman

0.13

0.61

1

Transposed

370

1119

1395

Gladman

396

1404

A RSV

Gladman
(look-up tab.)

202 / 306
(enc.) / (dec.)

362

381

ST 22 figures are normalized with respect to Gladman decryption.

08/09/2002

CHES 2002 Workshop — Redwood City (SF Bay), CA, USA

pp. 21/ 23

Comparisons with Gladman

Key
Schedule

ARM 7| 41.20 % 2.07 %

CPU

Encryption | Decryption

ARM 9| 49.85 % 0.73 %
ST 22 | 69.23 %
P Il

The comparison is performed setting to 100 % the time performances
of Gladman’s implementation for the corresponding function.

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 22/ 23

Conclusions
and Further Developments

Conclusions:
= Study and optimization of AES.

= Some Interesting time performance
Improvements in software.

= Part of this work Is under patenting process.

Further Developments:
= Hardware implementations.

08/09/2002 CHES 2002 Workshop — Redwood City (SF Bay), CA, USA pp. 23/ 23

?7?7?7? Any Question ?7?7?

