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{ FHE Why use Hyperelliptic Curve Cryptosytems?

The word ,,Hyperelliptic Curve Cryptosystem* sounds
awesome and impressive!

Increasing diversity of ,secure” PK algorithms

Shorter bitlengths have implementational advantages
compared to RSA or ECC

Perfectly suited for constrg
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Prominent PK Schemes:

Typical operand bitlength:
» RSA 1024...2048 bit
» Diffie-Hellman 1024...2048 bit
» Elliptic Curves 160...256 bit

m) Hyperelliptic curves allow for operand lengths 50...80 bit
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Mathematical Preliminaries
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What is a hyperelliptic curve?

A HEC of genus g over a finite field F is given by the set
of solutions (x,y). F X F to the equation

y? + h(x)y = f(x)

- h(x) i1s a polynomial of degree < g over F

- f(X) I1s a monic polynomial of degree 2g+1
over F

- certain further conditions
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Example: C:y?2=x°-5x3+4x + 3 over R
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C:y?=x>-5x3+4x + 3 over F,
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The group G:

Groupelement (divisor) ~ function of g points:

g
D=f(P,..P)=) mP
i=1

A divisor class group consisting of all (reduced) divisors
forms the Jacobian of the curve J(F,) (abelian group).
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Cardinality of the group G.

» Assuming HEC of genus g over F,, where gq=p",
» have ~q¢ possible divisors since D = f(R,...,P,)

The cardinality of J-(F,) Is given by Hasse-Weull:

(Ja-2% |< |1 (F)ls(Ja+n

E.g. want [J(F,)| ~ 21°°
= for g:]. (EC) use F2160
=>» for g=2 use F.«
=>» for g=3 use F,s

=>» for g=4 use F,.
Do not choose genus = 5 because of certain

attacks and index calculus
[Frey Ruck, Gaudry, Thériault...]
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The group law (Cantor):

» Use polynomial representation [Mumford] of divisors:
D = div(a,b) with polynomials a(x), b(x),
s.th. deg(b) = deg(a) =g

Cantor‘s Algorithm:

Input: D, =div(a;,b;), D, =div(a,b,)
Output: D;=D; + D, =div(ag,by)

Composition step: d = gcd(ay,a,,b,;+b,+h)=s,a;+s,a,+s;(b,+b,+h)

Need
polynomial
gcd, division,
multiplication
and
reduction!

a‘'s = a,a,/d
b‘; = [s;a,b,+S,8,b,+s5(b,b,+f)]/f mod a‘,
Reduction step: WHILE deg(a‘,) > g, DO
a' =f-b" ., moda‘,
b‘, = (-h-b*, ;) mod a‘,
END WHILE

az =a’y
b;=Db"
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Improvements
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Observation:

Cantor‘s Algorithm slow due to polynomial arithmetic

Solution:

Transform polynomial operations into field operations
(explicit formulae) by considering most frequent case
(occurs with probability ~ 1-O(1/q) ) [Harley 2000]
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Brief History of HECC:

1988 Use of HEC as a cryptosystem first suggested
[Koblitz 1988]

Explicit formulae suggested for genus-2 HECC
[Spallek 1994; Harley 2000]

Efficient explicit formulae for genus-2 HECC
[Matsuo et al. 2001; Miyamoto et al. 2002; Lange 2002]

Efficient explicit formulae for genus-3 HECC
[Kuroki et al. 2002; P. 2002; this work]

Efficient explicit formulae for genus-4 HECC
[P. et al. 2003]
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Improvements

Example: Adding divisors on HEC of genus 3

Polynomial arithmetic:

Input: D, =div(a,,b,), D, =div(a,b,)

Output: D; = D, + D, = div(asb,)

Composition step: d = gcd(a,,a,,b,+b,+h)=s,a,+s,a,+s,(b,+b,+h)
a‘'y = a,a,/d

b, =[s,a,b,+s,a,b,+s,(b,b,+)]/f mod a‘,

Reduction step: ~ WHILE deg(a‘,) > g, DO EXp | i Cit form u | ae

a\, =f-b',;, moda’,

oS e oty (field arithmetic only):

END WHILE tl=ae
t2=b*d;
a; =a'y t3=b*f;
td=c*e
by =b' t5= af;
t6=c*d;
t7 = sgr(c+f);
t8 = sgr(b+e);
t9 = (atd)* (t3+t4);
t10= (at+d)* (t5+t6);

r =(f+cH1+t2)* (t7+t9) + t10* (t5+6) + t8* (t3+t4);

t11 = (b+e)* (c+f);

inv2 = (t1+t2+c+)* (a+d)+t8§;
invl =inv2*d + t10 + t11;
inv0 = inv2*e + d* (t10+t11) +t9 +t7;
t12 = (invi+inv2)* (k+n+l+0);
t13 = (I+0)*invy;

t14 = (invO+inv2)* (k+n+m+p);
t15 = (m+p)*inv0;

t16 = (invO+inv1)* (I+o+m+p);
t17 = (k+n)*inv2;

rs0 =t15;

rsl = t13+t15+t16;

rs2 = t13+t14+t15+t17;

rs3 = t12+t13+t17;

rs4 =117,

t18 = rs3+rs4*d;

0s=r0 + *t18;

sls=rsl + rsA*f + €*t18;

25 =rs2 + rsA*e + d*t18;

w1l =inv(r*s2s);

w2 =r*wl;

W3 = wl*sgr(s2s);

w4 =r*w2;

w5 = sgr(w4);
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0 = w2*Ds;

sl = w2*sls;

2 = W2*s2s;

z0 = s0*¢;

71 = s1*c+s0*b;

72 = D*atsl*btc;

73 = sl*ats0+h;

74 = atsl,;

z5 = to_GF2E(1L);

t1=w4*h2;

t2=w4*h3;

uds=d+z4+sl;

u2s=d*uds+e+z3+ 0 +t2 +s1*z4;

uls=d*u2s+ e*u3s+ f + z2 + t1 + s1* (z3+t2) + S0*z4 + w5;

u0s = d*uls + e*u2s + f*u3s + z1 + wa*hl + sl* (z2+t1)
+ s0* (z3+t2) + w5* (a+f6);

t1 = u3stz4;

vOs = w3* (u0s*t1 + z0) + h0 + m;

vls=w3*(uls*tl + u0s+z1) + hl1 +1;

v2s = w3*(U2s*tl + uls+ z2) + h2 + k;

v3s=w3*(u3s*tl + u2s + z3) + h3;

a3 = f6 + u3s + v3s*(v3sth3);

b3 = u2s + a3*u3s + f5 + v3s*h2 + v2s*h3;

c3 = uls+ a3*u2s + b3*u3s + f4 + v2s* (v2s+h2) + v3s*hl + v1s*h3;

k3 =v2s+ (v3sth3)*a3 + h2;

13 =vls+ (v3sth3)*b3 + h1;

m3 = v0s + (v3st+h3)*c3 + hQ;
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Improvements

¥# Achieved speed-up for group operations
"1, 3 on genus-3 curves:

Type

# (inversion) | # (mult./squ.)

Adding

Polynomial Cantor?

4

200

Explicit

75

Doubling

Polynomial Cantor?

207

Explicit

1
4
1

7l

All numbers refer to formulas for curves over odd characteristic

1) Cantor's Algorithm implemented by [Nagao 2000]

In special cases

Savings?

2) one inversion costs approx. 8 multiplications

less computational cost!
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Improvements

¥¥ Required field operations per group addition
i = 23 compared to ECC:

Genus

# (inversion)

# (mult./squ.)

19 (ECC)

16

ey

1

25

32)

1

76

42)

2

1) ECC with projective coordinates GF(p)

2) HEC over fields of arbitrary characteristic

Can HECC be faster than ECC?
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Theoretical Analysis:

Given: - Microprocessor (wordsize w)
- Field library (ratio of multiplications per
Inversion = MI-ratio)

determine if ECC or HECC will be faster,
l.e., find accurate metric for practical purposes
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Theoretical Analysis (cont.):

Methodology:

1. Express all computational expensive operations
In terms of atomic operations (AOP).

2. Consider fields F,n.

3. Use fast field multiplication
algorithm [Lopez and Dahab 2000].
(Requires [wr2+(n/a+27) [niw]-7] AOPSs
per field multiplication)

4. Express cost of field inversion in terms of field
multiplications (MI-ratio).
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Theoretical Analysis (cont.):

Improvements

affine

ECE
projective

genus-4
h(x)=x

Addition

(2+m)T

15T

(148+2m)T

Doubling

2+m)T

5T

(75+2m)T

T = [w/2+(n/4+27)s-7]
m := Ml-ratio of field library

Total numbers depend on processor type and field library!
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Theoretical Analysis (result):

Number of atomic operations for 160-bit scalarmultiplication
over F,m, no special automorphisms used:

Atomic Operations
1800000 -

1600000

1400000

1200000

1000000

800000
ECC (affine)

600000

= ECC (projective)
400000

200000 -

Implementation of efficient curves over fields of characteristic 2

The cost of one inversion is assumed to be approx. 6 multiplications
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Implementation
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{2} Embedded performance (ARM7@80MHz):

Group order Field Divisor multiplication in ms
2191 Fouo 100.01
2190 F 05 121.49
2189 F 63 72.09
208 F a7 201.89

Implementation of special curves over fields of characteristic 2, no special endomorphisms used;

parts of the library by Kog et al. were used [Kog¢ 2000]
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; '- —

eoa

Group order

Field

Divisor muttiplicationdin ms

1

2191

F2191

2.78

2

2190

F o5

4.47

3

2189

F.63

3.01

4

2188

F 47

8.05

Implementation of special curves over fields of characteristic 2, no special endomorphisms used
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Implementation

&E Desktop performance (P4@1.8GHz):




hair for Communication Security
Ruhr University of Bochum Summary

Summary:

Improved explicit formulae for genus-3 HECC

First implementation on embedded pP

On embedded processors, genus-3 HECC can
outperform ECC and other HECC (g=2,4)

Proposed new accurate metric for practical
purposes
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Further Research:

» Further optimization of genus-3 formulae (?)
» High-speed implementations for GF(p)
» Standardization of HECC/ curves

» Parallalization of HECC operations

Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves




hair for Communication Security
Ruhr University of Bochum Thank You!

Additional information, newest results and source code available at:

http://www.hecc.rub.de

Questions?

Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves
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