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Why Yet Another AES Implementation?

* Most of the published FPGA implementations
target only high-end products
« Multi-Gigabit throughputs
« FPGA device costs reach $1,000 per single unit
* No regards for power consumption

 AES needs to be deployed in low-end products
as well (ATM, pay TV, wireless communication,
PDA etc.)
» Rarely need more than 100Mbps
* Low cost is a must
 Low power consumption is very welcome
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Low-end Design Objectives

« Support for encryption, decryption and key
schedule in one circuit

 Feedback modes of operation supported with no
penalty on performance

* Encryption/decryption speed not smaller than
100Mbps
 Minimum FPGA device cost

« Target low-cost Xilinx Spartan-Il family (less than $10
per unit)

* Minimum power consumption
* Minimize circuit size
* Minimize circuit activity
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Spartan-Il Family Architecture

Configurable
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AES Compact Design Approach

1. Start with iterative
architecture

2. Fold the iterative
architecture to minimize
circuit area

 |n this case make
folded architecture 4
times smaller
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AES Encryption Round
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What Makes Folding Non-Trivial?

Data Bytes

>

ShiftRows

~ SubBytes

~ MixColumns
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Folding the Register (1)

Note that ShiftRows is executed with no additional routing!
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Folding the Register (2)

* |nput and output memories are exchanged every
fourth clock cycle

 In practice both memories are the same memory with
ability to read and write simultaneously (Dual-Port
Memory)

« Lookup Tables (LUT) inside each CLB can be
configured as Dual-Port Memories!

* Note: data get written into consecutive locations
In the output memory
A shift-register could be used instead...
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Folding the Register (3)

 ALUT can be configured as a 16-deep
shift-register!
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Implementation of SubBytes

« Spartan-Il devices contain
4kbit BlockSelect RAMs

* One SubBytes could be
implemented using 2kbit
memory

« Each BlockSelect RAM is
a Dual-Port Memory with
Independent access

* Only 2 BlockSelect RAMs
are required to implement
4 SubBytes and 4
InvSubBytes
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Decomposition of InvMixColumns (1)

Let:
c(x) = MixColumns
d(x) = InvMixColumns

Following property holds:
{01} = ¢(x) « d(x)

Multiply both sides by d(x):
d(x) = c(x) * d*(x)

InvMixColumns can be expressed as a product of
MixColumns and d?(x), where
d?(x) = {04}x2 + {05}
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Decomposition of InvMixColumns (2)

> MixColumns

Implementation of d?(x) requires
even smaller area than c(x)!
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Encryption/Decryption Unit

Encryption paths Decryption paths

SubBytes/
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Implementation of Key Schedule
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SubBytes shares BlockSelect RAM
with encryption/decryption unit
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Implementation Results

* The entire design fits in a single Spartan-I|
XC2S30, second smallest in the Spartan-II family

Area
available ] 432 6 * Nearly 50% of the
device available for
other loqgic
required 9
for AES 222 3

* Throughput:
174Mbps at 60MHz
clock frequency

CLB Slices BlockRAMs
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Comparison with Other Compact Arch.

Area Throughput
CLB Slices | Block RAMs [Mbps]

0.22um

Our 222 174

S. McMillan 240 250
0.18um

Amphion CS5220 421 294

Helion compact | 392 LUTs 223
0.15um

Amphion CS5220 403 4 350
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Comparison with lterative Arch.

| | [EE———— e
Area Throughput [Mbps]
CLB Slces Block RAMs

0.22um
Our 222 3 174
P. Chodowiec 1230 18 577
A. Dandalis 5673 0 353
A. Elbirt 3528 0 294.2
V. Fisher - FLEX 2530 LE 24 EAB 451
V. Fisher - ACEX 2923 LE 12 EAB 212
K. Gaj 2507 0 414

0.18um
Amphion CS5230 573 10 1061
V. Fisher - APEX 2493 LE 50 ESB 612
Helion fast 2259 LUT 18 1001

0.15um
Amphion CS5230 573 10 1323
Helion fast 2259 LUT 18 1408
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Conclusions

* We presented a successful method for a compact
AES implementation in FPGAs

* The area requirements of the compact design
are smaller than the % of the area of the smallest
iterative architecture in the same technology

* The speed of our design is higher than the 4 of
the speed of the fastest iterative architecture in
the same technology

* The design avoids complicated routing
associated with implementation of ShiftRows
operation
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