Very Compact FPGA Implementations
of the AES Algorithm

Pawel Chodowiec and Kris Gaj

George Mason University

George Mason University

Why Yet Another AES Implementation?

* Most of the published FPGA implementations
target only high-end products
« Multi-Gigabit throughputs
« FPGA device costs reach $1,000 per single unit
* No regards for power consumption

 AES needs to be deployed in low-end products
as well (ATM, pay TV, wireless communication,
PDA etc.)
» Rarely need more than 100Mbps
* Low cost is a must
 Low power consumption is very welcome

George Mason University

Low-end Design Objectives

« Support for encryption, decryption and key
schedule in one circuit

 Feedback modes of operation supported with no
penalty on performance

* Encryption/decryption speed not smaller than
100Mbps
 Minimum FPGA device cost

« Target low-cost Xilinx Spartan-Il family (less than $10
per unit)

* Minimum power consumption
* Minimize circuit size
* Minimize circuit activity

George Mason University

Spartan-Il Family Architecture

Configurable

D WNNENENNRENEENENENEN (| — Logic

(7))
(7))
@
(@)
O
z S g
(h'd S”...H
g 22280
5 58 3I=
0 N <+ <
o © & 2 855
o N o oO
o D DOMm
®e o6 o

« Cost per unit < $10

i
i
i
o

i H—
W

s LI LI LTI Ll

LRl

. ue ...
OLE X8 8 X 8
LSt
B
L Bl
LA XS R SR

—ilE
— =
—l=
— =
—l=
—ilE
—ilE
—il=
—ilE
—l=
—l=
—l=
—l=
—ilE
—l=
—ilE
— =
—l=
— =

—lE=

George Mason University

AES Compact Design Approach

1. Start with iterative
architecture

2. Fold the iterative
architecture to minimize
circuit area

 |n this case make
folded architecture 4
times smaller

b

\ /

~
One round

- 128

\ll

v
v
/

‘ round ‘

- 32

\ 4

George Mason University

AES Encryption Round

o 1 2 3 4 5 6 7 8 9 A B CDEF
I

i _/_ 7— %_\ Data Bytes
ShiftRows

<
I I ~ SubBytes

L T T N T N r AddRoundkey

>

George Mason University 6

What Makes Folding Non-Trivial?

Data Bytes

>

ShiftRows

~ SubBytes

~ MixColumns

-

IDERERREREHE L + AddRoundKey

George Mason University 7

Folding the Register (1)

Note that ShiftRows is executed with no additional routing!

George Mason University

Folding the Register (2)

* |nput and output memories are exchanged every
fourth clock cycle

 In practice both memories are the same memory with
ability to read and write simultaneously (Dual-Port
Memory)

« Lookup Tables (LUT) inside each CLB can be
configured as Dual-Port Memories!

* Note: data get written into consecutive locations
In the output memory
A shift-register could be used instead...

George Mason University

Folding the Register (3)

 ALUT can be configured as a 16-deep
shift-register!

 LUT !
| |

! | |1, output
: I I
Input #—p Qa D Q P o ee |I° © [|
T I S R S |
clock | |- |- |- :
address * ! !
|

George Mason University 10

Implementation of SubBytes

« Spartan-Il devices contain
4kbit BlockSelect RAMs

* One SubBytes could be
implemented using 2kbit
memory

« Each BlockSelect RAM is
a Dual-Port Memory with
Independent access

* Only 2 BlockSelect RAMs
are required to implement
4 SubBytes and 4
InvSubBytes

OH

FFH
100H

1FFH

Address space -

> SubBytes

~ InvSubBytes

WEA
ENA

RSTA
CLKA
ADDRA[8: 0]
DIA[7 : 0]

WEB
ENB

RSTB

CLKB
ADDRBIS8 : 0]
DIB[7 : 0]

DOA[7 : 0]

DOB[7 : 0]

George Mason University

11

Decomposition of InvMixColumns (1)

Let:
c(x) = MixColumns
d(x) = InvMixColumns

Following property holds:
{01} = ¢(x) « d(x)

Multiply both sides by d(x):
d(x) = c(x) * d*(x)

InvMixColumns can be expressed as a product of
MixColumns and d?(x), where
d?(x) = {04}x2 + {05}

George Mason University

12

Decomposition of InvMixColumns (2)

> MixColumns

Implementation of d?(x) requires
even smaller area than c(x)!

George Mason University 13

Encryption/Decryption Unit

Encryption paths Decryption paths

SubBytes/

I InvSubBytes

register| |

Input

forwarding Subkey Qutput

Subkey

George Mason University

Implementation of Key Schedule

\
A
Rcon 3-deep
shift
32 ¥ register
rot I
| 1
npu! output |mplemented
On LUTs

SubBytes shares BlockSelect RAM
with encryption/decryption unit

George Mason University 15

Implementation Results

* The entire design fits in a single Spartan-I|
XC2S30, second smallest in the Spartan-II family

Area
available] 432 6 * Nearly 50% of the
device available for
other loqgic
required 9
for AES 222 3

* Throughput:
174Mbps at 60MHz
clock frequency

CLB Slices BlockRAMs

George Mason University 16

Comparison with Other Compact Arch.

Area Throughput
CLB Slices | Block RAMs [Mbps]

0.22um

Our 222 174

S. McMillan 240 250
0.18um

Amphion CS5220 421 294

Helion compact | 392 LUTs 223
0.15um

Amphion CS5220 403 4 350

George Mason University

17

Comparison with lterative Arch.

| | [EE———— e
Area Throughput [Mbps]
CLB Slces Block RAMs

0.22um
Our 222 3 174
P. Chodowiec 1230 18 577
A. Dandalis 5673 0 353
A. Elbirt 3528 0 294.2
V. Fisher - FLEX 2530 LE 24 EAB 451
V. Fisher - ACEX 2923 LE 12 EAB 212
K. Gaj 2507 0 414

0.18um
Amphion CS5230 573 10 1061
V. Fisher - APEX 2493 LE 50 ESB 612
Helion fast 2259 LUT 18 1001

0.15um
Amphion CS5230 573 10 1323
Helion fast 2259 LUT 18 1408

George Mason University

Conclusions

* We presented a successful method for a compact
AES implementation in FPGAs

* The area requirements of the compact design
are smaller than the % of the area of the smallest
iterative architecture in the same technology

* The speed of our design is higher than the 4 of
the speed of the fastest iterative architecture in
the same technology

* The design avoids complicated routing
associated with implementation of ShiftRows
operation

George Mason University 19

	Very Compact FPGA Implementations of the AES Algorithm
	Why Yet Another AES Implementation?
	Low-end Design Objectives
	Spartan-II Family Architecture
	AES Compact Design Approach
	AES Encryption Round
	What Makes Folding Non-Trivial?
	Folding the Register (1)
	Folding the Register (2)
	Folding the Register (3)
	Implementation of SubBytes
	Decomposition of InvMixColumns (1)
	Decomposition of InvMixColumns (2)
	Encryption/Decryption Unit
	Implementation of Key Schedule
	Implementation Results
	Comparison with Other Compact Arch.
	Comparison with Iterative Arch.
	Conclusions

