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Why HECC

Not wise to put all eggs in one basket.

hecc close to ecc in performance: ±10%.

See Pelzl, et al., before lunch, for g = 3 over binary
fields, and (in progress) A. for g = 2 over prime fields.

Smaller fields might allow use of cheaper hardware
(but: put more software on card.)

For the moment, less patents for hecc than on ecc.
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Just a reminder...

Here’s how a hyperelliptic curve C of genus 2 looks like!

y2 = x5 − 5 x4 −
9
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Group of Divisors

Curve C : y2 + h(x)y = f(x)

f monic, deg f = 2g + 1, deg h 6 g. g = genus.

Points on a hyperelliptic curve in general do not form a
group!

Use divisors, i. e. “sets of points” with multiplicities:

k
∑

i=1

miPi −

( k
∑

i=1

mi

)

∞ : mi > 0, Pi ∈ C r {∞}

We show how this works “geometrically”.
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How to do HECC
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Mirror them w.r.t. x-axis and form sum:

(P1 + P2 − 2∞) + (Q1 + Q2 − 2∞) =

= R1 + R2 − 2∞

Consider the same curve, with two divisors
(P1 + P2 − 2∞) and (Q1 + Q2 − 2∞).

There is a unique cubic which passes
through the four given points.It intersects C in two more points.
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Divisor Classes and Mumford Representation

This defines a group, the Jacobian of C, Jac(C).

If K = Fq, then # Jac(C) ≈ qg.

But working with “point sets” and intersecting curves is
very inefficient.

Better:
Mumford representation and

Cantor’s algorithm ⇒ explicit formulæ.
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Divisor Classes and Mumford Representation

Curve C : y2 + h(x)y = f(x)

Let D =
∑

mP P −
(
∑

mP

)

∞ have deg
∑

mP 6 g .
– more precisely: degree of associated effective divisor –

D represented by unique pair of polynomials
U(t), V (t) ∈ K[t] with: g > degt U > degt V , U monic.















U(t) =
∏

(t − xP )mP

V (xP ) = yP for all P

U(t) divides V (t)2 + V (t)h(t) − f(t)

Coordinates of D: the coefficients of U and V .
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Dangers for HECC

Two categories of attacks:

mathematical (on structure) and
hardware-related (on implementation).

Mathematical attacks ⇒ g 6 4.

Here we consider Side Channel Analysis.

Simple.

Differential.
Goubin type.

I will not describe them for the umpteenth time here...
Not interested in fault analysis in this paper.
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Simple Side Channel Analysis

Solution: make sequence of elementary ops regular.

Make sequence of group ops homogeneous
(e.g. Coron’s double-and-add-always).

Make the group ops indistinguishable (e.g. Hess or
Jacobi form for ecc, Brier-Joye, insertion of dummy
ops: latter easy with Lange’s genus 2 formulae);
or split the group ops into blocks which can be made
regular (Ciet-Joye).

From now assume hecc immunised against SPA.
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Differential Side Channel Analysis

Applies to computations n · D in the group G, n fixed.

Exploits knowledge of internal representation of operands.

⇒ internal data must be unpredictably scrambled:

Some techniques for previous cryptosystems:

Fa
st

er Joye-Tymen (ecc): Compute in isomorphic curve.
Coron’s 2nd and 3rd (ecc): Randomise D.

Sl
ow

er Coron’s 1rst: Randomise scalar n.
Joye-Tymen: Use isomorphic binary field.

Which countermeasures for hecc?
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First Countermeasure: Curve Randomisation

hecc analogue of Joye-Tymen’s ecc curve randomisation.

φ : C → C̃ = a K-isomorphism of hyperelliptic curves.

⇒K-isomorphism φ : Jac(C) → Jac
(

C̃
)

.

Assume φ and φ−1 can be computed “quickly”.

Instead of Q = n · D in Jac(C)(K), we compute

Q = φ−1
(

n · φ(D)
)

Transfer all points of D over C to C̃ “simultaneously” by
manipulating coordinates of divisor.
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First Countermeasure: Curve Randomisation

D ∈ Jac(C)(K)
multiplication by n

−−−−−−−−−−−−→ Jac(C)(K) 3 n · D

φ





y

x




φ−1

φ(D) ∈ Jac
(

C̃
)

(K) −−−−−−−−−−−−→
multiplication by n

Jac
(

C̃
)

(K) 3 n · φ(D)

Details in the paper. Two types of isomorphisms:

Using only multiplications: All coefficients of C and of D are
multiplied by different powers of a randomly chosen s ∈ K.
Total # field muls LESS than in one group op!

Using also additions: everything can become slower.
(work with more general curves).
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Second Countermeasure: Divisor Randomisation

On embedded hardware, field inversion is very slow.

This prompted the introduction of projective coordinates.
They do not require inversions.
A group element has many different representations.

For ecc: two triples (X, Y, Z) and (sX, sY, sZ) represent the
same point if s ∈ K×.

Coron uses them to randomise the base point:
replaces (X, Y, Z) with (sX, sY, sZ) for a random s ∈ K×.
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Second Countermeasure: Divisor Randomisation

For genus 2 hecc: Projective and New coordinates (Lange).

Projective: a divisor D ≡ [U(t), V (t)] is represented as a
quintuple [U1, U0, V1, V0, Z] ∈ K5 where

U(t) = t2 +
U1

Z
t +

U0

Z
and V (t) =

V1

Z
t +

V0

Z
.

The randomisation consists in picking a random s ∈ K×

and by performing the following replacement

[U1, U0, V1, V0, Z] 7→ [sU1, sU0, sV1, sV0, sZ] .

For New coordinates the method is entirely similar.
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Goubin type attacks: Context

Remark: randomisation of zero by multiplication by a
random value, or by random isomorphism, is... zero!

Definition: context of Goubin-type attacks:

Let H be a small subset of the group G s.t.:

The elements of H possess properties which makes their
processing detectable by side-channel analysis – for
example, zeros in the internal representation – and

are invariant under a given randomisation procedure R.

H := set of special points/divisors.
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Goubin type attacks: Description

Suppose most significant digits nr, nr−1, . . . , nj+1 of n known;
we want to find nj .

Assume that a chosen message attack can be set up to obtain
an element of H as a partial result in a specific step of the
scalar multiplication – if nj has been guessed correctly.

This element may be t · D where D is the chosen message
and t = number represented by (nr, nr−1, . . . , nj+1, nj).
In this case the specific step of the scalar multiplication
would be an addition or doubling involving t · D.
For other value(s) of nj elements of H should be avoided.

Then, statistical correlation of side-channel traces may
reveal if the guess was correct even if R is used.
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Goubin type attacks: The bad news

Such sets H exist. Examples:

H = Points with a zero coordinate of an elliptic curve.

H = Divisors on a hyperelliptic curve with a zero
coordinate (e.g. of deg < g).

Preserved by above randomisations.

Probability random point/divisor ∈ H is O(q−1), q = #K,
so set is small.

On ecc it is easy to avoid such points (remember Nigel
Smart’s talk). But for hecc?
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Goubin type attacks: The good news

Scalar randomization: ok (but: slow).

Message blinding: hecc analogue of Coron’s 2nd method.

R = secret divisor, with S = n · R known.

Compute n · (D + R) − S in place of n · D .

If R belongs to the group generated by D (normal case),
equivalent to isogeny of random degree:
if R = m · D then D + R = (m + 1) · D .

An isogeny is not an isomorphism with probability
1 − O(q−1) ⇒ images of “special” divisors are not special.
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Typos

Page 378, line 7.

Errata: ... deg(t(D + R)) = g also with
probability O(q−1) ...

Corrige: ... deg(t(D + R)) < g also with
probability O(q−1) ...
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Conclusions

Two methods to prevent basic DPA for hecc.
Curve randomisation (generic).
Divisor randomisation (specific).
Cheaper than a single group operation!

Serious Goubin-type attacks on hecc discovered.
Suitable divisor randomisation to thwart them.
Costs as few group operations.

Ditto for trace-zero varieties (Frey, Naumann, Lange, Lange-A.).
Now one can really start deploying hecc on embedded devices!
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Any questions?

?????
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