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Results (preview)

Given an integer IV, and a polynomial p(x) in one variable, defined mod NV,
of degree d, and the bound B = N4 \we can efficiently find all solutions
x( satisfying
|$0‘ < B
p(zg) = 0 mod N
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Two related messages (Matt Franklin, Michael Reiter)

RSA encryption: e = 3

N = pq
c=m> (mod N)
b= (m+1)° (mod N)

(b+2c—1)/(b—c+2) = [(M*+3m*+3m+1)+2m°—1]/[(m>+3m*+3m+1)—m>+2]

— [3m3 +3m? + 3m]/[3m2 + 3m + 3]
=m (mod N)



Generalize?

— 5
c = m° (mod N)
b = (m+1)?° (mod N)

203 — b%c — 4bc? + 3¢3 + 14b% — 88be — 51¢2 — 9b + 64¢c — 7
b3 — 3b%¢c + 3bc2 — ¢33+ 37b%2 + 176bc + 37¢c2 +73b — 73c + 14

m ==

e You can continue for other values of e.

o |t gets harder.



Polynomials in m, treating b, ¢ as given constants, evaluating to 0 (mod V)
at my:

m®>—c¢ = 0mod N
(m+1)?°—-c = 0modN
ged(m® — ¢, (m +1)° — b) m —mg € Z/N|m] usually

E.g. ged(m® — 43, (m +1)> —4) =m — 5 € Z/67[m]

But not always:

m?* + 36m3 + 53m? + 10m + 29
(m — 29)(m? — 2m? — 5m — 1)
c Z/67[m]

ged(m3t — 29, (m + 1)°! — 30)



Known difference

Just as easy if known difference between messages:

¢c = m>3>mod N
b = (m+y)>mod N
Known: c,b,y, N
Unknown: m

ged(m?® — ¢, (m +1)® —b) = m — mg € Z/N|[m)]



Small unknown difference

What if the difference is small but unknown?

c = m3>modN
b = (m+y)>mod N
Known: c,b, N
Unknown: m,y, with vy small
Example:
m = "0.14 micron technology to be announced 2 December 2003.

$4.85 IBM stock jump anticipated. gr3172680994"

m + y = “0.14 micron technology to be announced 2 December 2003.
$4.85 IBM stock jump anticipated. jb5637124412"



“gr3172680994", “jb5637124412" random padding for security.
y="1b5637124412"-"gr3172680994" is small.

Resultant:

Res,,(m3 —c,(m+1y)3 —b) € Z/N|y]

The resultant is a polynomial in y which results from eliminating m from the
first two equations; if (m, y) simultaneously satisfies the first two equations,

then y satisfies the resultant.



Resultant example

N = 67
e 2
C m? =39 mod N
b = (m+4y)* =-Tmod N

R(y) = Res,,(m?* =39, (m+y)* +7) € Z/67[y]

P(m,y) x (m*=39) + Q(m,y) x (m+y)*+7) = R(y)

(2my+3y*+21) x (Mm*—39)+(—2my-+y*—21)((m+y)*+7) = y*+3y*—28



0 -39 0
10 —39
2y Y+ 7 0
1 2y y?4T

Resy,(m* — 39, (m +y)* +7) = det

O = O ==

Two (=deg((m + )% + 7)) rows of coefficients of m? — 39 (as polynomial
in m), staggered:

(1,0, —39] < 1m? + 0m' + (—39)m°;

then two rows of coefficients of (m + y)* + 7, staggered:

1,2y, 9° + 7] & 1m® 4+ 2y)m* + (y° + T)m".



Respm(m? — 39, (m +y)* +7) = y* + 3y* — 28 (over Z/67)
is a polynomial of degree 4 in y (4 =2 x 2).

Res,,(m> — 16, (m + y)° — 43) (over Z/67) is a polynomial of degree
9iny (9=3x3):

Respm(m® — 16, (m +y)® — 43) = y” + 50y° + 2y° + 24 € Z/67[y]

with some small solution y.

Could we solve such an equation?



Second example (more natural)

Message = “The password for today is Sashimi”

mo="The password for today is — —" (known)
y="Sashimi” (unknown)

c = (mgy+ 1) mod N

Known: ¢, mg, N. Unknown but small: y.

p(y):(m0+y)3—c:OmodN

“Small” unknown 7; polynomial P has “low" degree 3.



Unifying theme

Polynomial p(z) = ¢ + pg_12% 1 + - + prz + po
Modulus N (large integer, unknown factorization)
“Low” degree d

“Small” solution xq:

Bound B, existence of xg € Z with |xo| < B and p(zg) = 0 mod N.



Goal:

e Tolerate B as large as possible, as a function of N and d.

e Find all z¢ satisfying bound and polynomial.



First try — Johan Hastad

Collection C'7 of d + 1 polynomials:

C,={z",0<i<dU{p(x)/N}

For each polynomial ¢ € C1, each small root xg: g(x() is an integer.
Same is true of any integer combination of polynomials in C}.



Lattice generated by d + 1 columns of real matrix:

1 0 0 --- 0 0
O B 0 --- 0 0
o 0 B? ... 0 0
L1: :
0 0 O B2 0
0 0 O 0 B¢l
0 0 O 0 0




0 po/N

0 plB/N
B2 py,B%/N

0  p3B3/N

0 pd_le_l/N
0 ded/N

= [2%,p(z)/N]



Each column v is a polynomial ¢(z) € C1, expressed in basis z*/B*.
The ith element is coefficient of z* in g(x), times scaling factor B*.

Lattice basis reduction (LLL).

det(L1) 1 x BxB?x---x B4 x (BYN)

= BUTD/2/N ~ 1

(up to a constant depending on dimension d but not on N, B).
Lattice basis reduction gives a column v with bounded norm:

\/Z 2 L "}/d >< det(Ll))l/(dH) ~ 1



(Again 4 depends only on d, not N or B).
q(xp) is an integer, but

lq(o)] 2 laiwp|

2 [vi(zo/B)'|

2 |vil’]

(\/m < %l)Bd/Q/Nl/(d-H)
1

ANY/ANN/ANNR | IV/AN



We arrange that
det(L1) =~ 1
B~ N¥/(@+d)

Then g(x¢) € Z and |q(xg)| < 1 implies ¢(xg) =0 € R. (Not just Z/N.)
Can solve g(zg) = 0 € R by ordinary methods.

Note: this gives all small solutions xy.

Problem: B = A/ N2/(@°+d) is small. Let's try to increase it.



Second try, improved B

Larger collection of 2d polynomials:

Co={2"0<i<d U{(p(x)/N)x*,0 <i<d}

0 0 0 p2B%/N mB%2/N .- 0
|00 0 pg_oB?¥2/N pg_3B2/N ... 0
710 0 B4l py 1B*'/N py_oB*'/N ... pyB*l/N

0 0 0 1B4/N pi—1BYN -~ pBYN

0 0 0 0 1BYY/N ... pyBYTL/N

00 - 0 0 0 .-+ 1B%1/N



Dimension=2d.
Determinant=R0F 1+ +(2d=1) /yd — pd(2d—1) /\d

As before, if we set det ~ 1
(B ~ Nl/(2d—1))

then we get column vector norm < 1.
2
Improved bound from B ~ N?2/(d°+d) to B ~ N1/(2d=1),



Calculating the bounds

Need det L ~ 1.
L is a triangular matrix; determinant is product of diagonal entries.



Calculating the bounds ...

First case, diagonal is

1,B,B?,...,B" BN
det Ly = BOTIH2H+(d=1)+d /Ny — Bla+d)/2 /N ~ |
B ~ N2/(d*+d)

Second case, diagonal is

1,B,B%,...,B% ! BY/N, BN, .., B?~1/N
det Ly = BOFT1+2++(2d-1) /Nd — BQd2—d/Nd ~ 1
B ~ Nl/(Zd—l)



Tightening the bounds

If N|p(xo), then N¥|p(z)¥.
Pick a parameter h: larger h gives larger matrix, more work, and better
bounds B.

Larger collection of d x h polynomials:
Cs = {(p(x)/N)F2",0 < i< d,0 <k < h}

Diagonal entries of L3 are

(B IN¥I0 < i< d,0 <k < h}



det(Lg) — H(Bz—l-dk/Nk) — Bdh(dh—l)/ZN—dh(h—l)/Z
ik
For det(L3) ~ 1 we need

B~ N(h—1)/(dh=1)

Fixing € and picking h large (h &~ 1/(de)), this becomes
B < Og(NYa7¢)

So the natural bound appears to be

B~ N/



Results

Given an integer IV, and a polynomial p(x) in one variable, defined mod NV,
of degree d, and the bound B = N'/?, we can efficiently find all solutions
x( satisfying
|£l70‘ < B
p(zg) = 0 mod N

“Efficient”: time polynomial in (d,log N).



Summary of technique (one variable mod N)

Given p(x) (degree d), N, B~ N4

To find: g such that p(xzp) = 0 mod N and |zg| < B

e Find real polynomials g;(z) with ¢;(zq) € Z (at any root ()

e Lattice basis reduction: find ¢(x), an integer combination of ¢;(x) with
small coefficients

e q(xg) €EZ

e |q(zo)| <1 (when |z¢| < B)



e Therefore q(xg) = 0 € R (for all small roots)
e Solve ¢(xp) =0 € R — easy

e This gives all valid xg



Related — two variables

Given a polynomial p(x) in two variables, defined over Z (not modN any
more), we can define bound B,, B, in terms of the degree and coefficients
of p. We can efficiently find all integer solutions (xg, yo) satisfying

Example:
p(z,y) = (Po+a)* (Qo+y) —N
where P,Q ~ v/N.
Then B, = B, = N/4
Factor N if we know half the bits of P = Py + x.



Two variables in 7

p(z,y) = ley + Ax + By + C




Solution (z,y) — vector [1, x, 2%, vy, xy, 2%y, y*, xy?, 2y
Orthogonal to vectors [C, A, .,B,1,.,.,.,.]T ~p(z,y)
L = lattice of vectors =~ z'y’p(z,y)

Build lattice M orthogonal to L

Typical element [m., Mg, M2, My, MTY, M2, M2, My 2, M2 7" not

necessarily = [1,x, 22, y, vy, 2%y, y°, xy?, v°y?] for some (z,y)

y2

Lattice basis reduction on M, find (dim (M) — 1) smallest basis elements



Hyperplane equation defining the sublattice M’ C M spanned by them

Small solution (xg,yg) (smaller than “determinant bound”) will give an
element of M’ — can’t involve largest basis element

Equation of M’ translates to polynomial equation ¢(zq,y0) = 0 not a
multiple of p(x,y)

Simultaneously solve p(z,y) = q(x,y) =0 in R

Finds all small solutions (xq, o).



Summary and extensions

Solve p(x) = 0 mod N (univariate modular)
Solve p(x,y) = 0 € Z (bivariate in Z)

Can try same techniques for p(z,y) = 0 mod N (bivariate modular) or

p(x,y,z) = 0 € Z (trivariate in Z); not guaranteed to work but can
sometimes.

(Boneh has done some applications on these lines.)



Return to One Variable mod N

Side effect of lattice proof: upper bound on number of small roots.

No more than dh roots xg with

2| < B &~ N(h=1)/(dh=1)  pr(1/d)—(1/dh)



Existential proof

An existential proof of this bound is due to
Konyagin & Steger, “On polynomial congruences” (1994).

p(x) mod N has hd small roots x, with |z,| < B/2

Vandermonde matrix M; = [22],0 < a,j < hd
04 |det(My)] = [, |ta — 23] < BOD(RA=1)/2

Row operations give matrix My with entries My = [z'p(2,)?],0 < i <
d,0<j<h

Row of M, are divisible by N7, so det(M>) is divisible by N(h=1)/2



Determinants are equal, so Nd4h=1/2 < Bhd(hd=1)/2 and B >
A (h—1)/(hd—1)

M closely related to our matrix.



M, and M,

1 1 1
Lo I3 T4
r3 T3 T3

3 3 3




1 o
21 25
p(x1) p(x2)
Jilp(fl) $2p($2)
xrip(fﬁ'l)




Rows of Mj are divisible by (1,1,1, N, N, N, N2, N2, N2, ... Nh=1 Nh=1)
Relation of existential and constructive proofs:

Up to scaling of rows, our matrix L3 and Konyagin and Steger's matrices
My and M, are related by

L3 X M1 :Mg.



A second existential proof

Following H.W. Lenstra, “Divisors in residue classes” :
N squarefree, N =[] ¢;
k small roots p(x;) = 0 mod N

B B
—§<:U1<$2<-~-<xk<+§

Define Y = H1<7;<j<k($j — x;)
0<Y < Bk(kz—l)/Q

For each ¢|N, p(x) has at most d different roots mod q.

Number of pairs (i < j,z; = x; mod q) is at least dx (£)(£ — 1) /2 =

d

_ k(k—d)
2d




(Worst case: k/d instances in each residue class):

qk(k—d)/Zd‘Y

True for each q|N, and N is squarefree, so

Nk(k—d)/2d|Y

Nk(k—d)/Qd < Y < Bk(kz—l)/Q
B > N(k—d)/(kd—d)

Or, if B< N (k=d)/(kd—d) then number of roots is less than k.
Same bound as lattice construction.



Existential proof ...

Relaxing conditions:
“N squarefree”: If ¢°|N,¢ > 1, it suffices that p(x) has d distinct roots
mod ¢q. Hensel lifting gives q|x; — z; = ¢*|z; — ;.



Example showing tightness

N = ¢
p(r) = 23+ aqx® + bg*x
Any x with q|z is a root: p(x) =0 mod N.
If B = N'/3%¢ then there are N€ roots with |z| < B — exponentially many.

We do not know of other examples giving exponentially many roots.

Conjecture: If there are exponentially many roots z; of p(x) = 0 mod N
with |z;| < B = N'/9€ then N has a repeated prime factor ¢‘|N, and
p(x) has a repeated root mod gq.



If so, then the discriminant of p is divisible by ¢, and we have:

gcd{N, Res,[p(x),p'(z)]} > 1

Also: If q|N, can't have more than deg(f) roots of f(x) = 0 mod N
smaller than ¢, since f has at most that many roots modg.

In RSA case, the polynomial has only one root mod/N, because of unique
decryption.



Break up the hard case (B = N1/3%€) into two hard problems:

(1) Show that the only bad examples are of this form
(so that ged{N, Res,[p(z),p/(z)]} > 1)

(2) If not this bad case, use that (gcd=1) in the lattice solution:

dq(x),r(x) € Zlx];c € Z -
q(x)p(x) +r(z)p'(z) +eN =1

And then what?



Applications

e RSA, e=3, two related messages, difference N'1/9
e RSA, e=3, partially known message, unknown N1/3

e Factor integers with partial information:
If N =pq, p= N know N and (approximately) o, with p = pg + z,
known pg, unknown x < NO‘Q, then can compute z.

e [Boneh| RSA with small decryption exponent
Known N = pq and e. Unknown p,q,¢(N)=(p—1)(¢g—1) =N — s,d

de =1+ z¢(N)
—1+2(N —s)=0mod e
Unknown small z, s



e Divisors in residue classes (DC, Nick Howgrave-Graham):
H W Lenstra: Given r,s, N € Z with ged(r,s) =1 and s > N% a > 1/4,

#{d|N,d = r mod s} < (a — 1/4)~? independent of N

He showed this existentially for « > 1/4 and constructively for a > 1/3.
The present methods give constructively for a > 1/4.

N —(zxs+7r)(ys+7r")=0, z,y small

e Primality testing: uses Lenstra’s “divisors in residue classes” as subroutine

e Find worst cases for floating-point rounding of mathematical functions.
(Zimmerman, Stehle, Lefevre, 2003)



e “Some RSA-based Encryption Schemes with Tight Security Reduction”
(Kaoru Kurosawa and Tsuyoshi Takagi, IACR ePrint 2003-157)

Secret: p, q; Public: n, a, e; Secret nonce: r < n

Encryption: message m < n — ciphertext ¢ = (r + )¢ 4+ mn) mod n”
Security reduction. Suppose we knew how to extract m from c.

— Choose random 7 < n

— Compute z = 7 + /7 mod n?

— From fake random plaintext m, compute ciphertext ¢ = ¢ +mn mod n?
— Obtain valid plaintext m from oracle

— Compute w = ¢ — mn = (r + a/r)¢ mod n?

— Compute u = (w — z¢)/n

— Compute y = u/(ex®"!) mod n

— Compute v = (7 + a/7) + ny mod n?

— Solve 72 — vr + a = 0 mod n? using present work



NP-hard variants

(Manders and Adleman) Given «, 3, € Z, it is NP-hard to decide whether
there exist positive integers T, % satisfying az? + By — v = 0. Remains
NP-hard if factorization of 3 is known.

Easy to convert to NP-hard problem in our context:

Pick N sufficiently large, bounds B, = \/v/a and B, = v/23. Then it is
NP-hard to decide whether there are solutions to

ar?+ By —7=0mod N
z| < By, |y| < B,

Bounds B, B, do not grow with V.
Note: this is two variables mod N: we solve in one variable mod V.



Similarly
ar?+By—17—2N =0
x| < By, |yl < By, |z|<B,=2

This is in three variables over Z:; we solve in two variables over Z.



Extensions

Divided difference for two different small roots
Univariate modular polynomial p(z) = 0 mod N, deg(P) = d.

Want two different small roots: p(x) = p(y) = 0 mod N,
ged(w —y, N) =1

Cast as bivariate problem:

p(x) =0, ply) =0, q(z,y) = — 0 mod NV



The standard method can find z if |z| < B, = N¥4 or y if |y| < B, =
N1/ With the extra information (two different small roots), can find if

ByBy~!' < N?,

a slight improvement.



Conclusions

Find “small” solutions to “low” degree polynomials:

e In one variable mod N;

e |In two variables over Z.

Plenty of applications, mostly cryptographic.



