International Association for Cryptologic Research

Ph.D. Database

The aim of the IACR Ph.D. database is twofold. On the first hand, we want to offer an overview of Ph.D. already completed in the domain of cryptology. Where possible, this should also include a subject classification, an abstract, and access to the full text. On the second hand, it deals with Ph.D. subjects currently under investigation. This way, we provide a timely map of contemporary research in cryptology. All entries or changes need to be approved by an editor. You can contact them via phds (at)


Pascal Junod (#239)
Name Pascal Junod
Personal Homepage
Topic of his/her doctorate. Statistical cryptanalysis of block ciphers
Category secret-key cryptography
Keywords block ciphers, cryptanalysis, linear cryptanalysis, statistical cryptanalysis, DES, FOX
Ph.D. Supervisor(s) Serge Vaudenay, Serge Vaudenay
Year of completion 2005

Since the development of cryptology in the industrial and academic worlds in the seventies, public knowledge and expertise have grown in a tremendous way, notably because of the increasing, nowadays almost ubiquitous, presence of electronic communication means in our lives. Block ciphers are inevitable building blocks of the security of various electronic systems. Recently, many advances have been published in the ?eld of public-key cryptography, being in the understanding of involved security models or in the mathematical security proofs applied to precise cryptosystems. Unfortunately, this is still not the case in the world of symmetric-key cryptography and the current state of knowledge is far from reaching such a goal. However, block and stream ciphers tend to counterbalance this lack of “provable security” by other advantages, like high data throughput and ease of implementation.

In the ?rst part of this thesis, we would like to add a (small) stone to the wall of provable security of block ciphers with the (theoretical and experimental) statistical analysis of the mechanisms behind Matsui’s linear cryptanalysis as well as more abstract models of attacks. For this purpose, we consider the underlying problem as a statistical hypothesis testing problem and we make a heavy use of the Neyman-Pearson paradigm. Then, we generalize the concept of linear distinguisher and we discuss the power of such a generalization. Furthermore, we introduce the concept of sequential distinguisher, based on sequential sampling, and of aggregate distinguishers, which allows to build sub-optimal but efficient distinguishers. Finally, we propose new attacks against reduced-round versions of the block cipher IDEA.

In the second part, we propose the design of a new family of block ciphers named FOX. First, we study the efficiency of optimal diffusive components when implemented on low-cost architectures, and we present several new constructions of MDS matrices; then, we precisely describe FOX and we discuss its security regarding linear and differential cryptanalysis, integral attacks, and algebraic attacks. Finally, various implementation issues are considered.

E-Mail Address pascal (at)
Last Change 2014-12-25 10:10:33
To provide an update on this entry, please click .

Contact: phds (at)

[ IACR home page ] [ IACR PhDs page ] © IACR