*15:17*[Pub][ePrint] Higher-order cryptanalysis of LowMC, by Christoph Dobraunig and Maria Eichlseder and Florian Mendel

LowMC is a family of block ciphers developed particularly for use in multi-party computations and fully homomorphic encryption schemes, where the main performance penalty comes from non-linear operations. Thus, LowMC has been designed to minimize the total quantity of logical \"and\" operations, as well as the \"and\" depth. To achieve this, the LowMC designers opted for an incomplete S-box layer that does not cover the complete state, and compensate for it with a very dense, randomly chosen linear layer. In this work, we exploit this design strategy in a cube-like key-recovery attack. We are able to recover the secret key of a round-reduced variant of LowMC with PRESENT-like security, where the number of rounds is reduced from 11 to 9. Our attacks are independent of the actual instances of the used linear layers and therefore, do not exploit possible weak choices of them. From our results, we conclude that the resulting security margin of 2 rounds is smaller than expected.