International Association for Cryptologic Research

IACR News Central

Get an update on changes of the IACR web-page here. For questions, contact newsletter (at) You can also receive updates via:

To receive your credentials via mail again, please click here.

You can also access the full news archive.

Further sources to find out about changes are CryptoDB, ePrint RSS, ePrint Web, Event calender (iCal).

00:17 [Pub][ePrint] Practical Attribute Based Encryption: Traitor Tracing, Revocation, and Large Universe, by zhen Liu and Duncan S. Wong

  In Ciphertext-Policy Attribute-Based Encryption (CP-ABE), a user\'s decryption key is associated with attributes which in general are not related to the user\'s identity, and the same set of attributes could be shared between multiple users. From the decryption key, if the user created a decryption blackbox for sale, this malicious user could be difficult to identify from the blackbox. Hence in practice, a useful CP-ABE scheme should have some tracing mechanism to identify this `traitor\' from the blackbox. In addition, being able to revoke compromised keys is also an important step towards practicality, and for scalability, the scheme should support an exponentially large number of attributes. However, none of the existing traceable CP-ABE schemes supports revocation or large attribute universe. In this paper, we construct the first practical CP-ABE which possesses these three important properties: (1) blackbox traceability, (2) revocation, and (3) supporting large universe.

When compared with the latest traceable CP-ABE schemes, this new scheme achieves the same efficiency level, enjoying the sub-linear overhead of $O(\\sqrt{N})$, where $N$ is the number of users in the system, and attains the same security level, namely, the fully collusion-resistant traceability against policy-specific decryption blackbox, which is proven against selective adversaries in the standard model.

The scheme also supports large attribute universe, and attributes do not need to be pre-specified during the system setup. It is highly expressive and can take any monotonic access structures as ciphertext policies.

We also present the analogous results in the Key-Policy Attribute-Based Encryption (KP-ABE) setting, where users\' description keys are described by access policies and ciphertexts are associated with attributes.

We construct the first practical KP-ABE which possesses the three important properties: (1) blackbox traceability, (2) revocation, and (3) supporting large universe.

The scheme is highly expressive and can take any monotonic access structures as key policies,

and is efficient, namely, enjoys the sub-linear overhead of $O(\\sqrt{N})$ while supporting fully collusion-resistant blackbox traceability and revocation, and does not need to pre-specify the attributes during the system setup.

The scheme is proven selectively secure in the standard model.

00:17 [Pub][ePrint] Nearly Practical and Privacy-Preserving Proofs on Authenticated Data, by Michael Backes and Dario Fiore and Raphael M. Reischuk

  We study the problem of privacy-preserving proofs on authenticated data in which a party receives data from a trusted source and is requested to prove statements over the data to third parties in a correct and private way, i.e., the third party learns no information on the data but is still assured that the claimed proof is valid. Our work particularly focuses on the challenging requirement that the third party should be able to verify the validity with respect to the specific data authenticated by the source -- even without having access to that source. This problem is motivated by various scenarios emerging from several application areas such as wearable computing, smart metering, or general business-to-business interactions. Furthermore, these applications also demand any meaningful solution to satisfy additional properties related to usability and scalability. First, third parties should be able to check proofs very efficiently. Second, the trusted source should be independent of the data processor: it simply (and possibly continuously) provides data, e.g., without knowing which statements will be proven. This paper formalizes the above three-party model, discusses concrete application scenarios, and introduces a new cryptographic primitive for proving NP relations where statements are authenticated by trusted sources. After discussing a generic approach to construct this primitive, we present a more direct and efficient realization that supports general-purpose NP relations. Our realization significantly improves over state-of-the-art solutions for this model, such as those based on Pinocchio (Oakland\'13), by at least three orders of magnitude.

00:17 [Pub][ePrint] Proving Correctness and Security of Two-Party Computation Implemented in Java in Presence of a Semi-Honest Sender, by Florian Böhl and Simon Greiner and Patrik Scheidecker

  We provide a proof of correctness and security of a two-party-computation protocol based on garbled circuits and oblivious transfer in the presence of a semi-honest sender. To achieve this we are the first to combine a machine-assisted proof of correctness with advanced cryptographic primitives to prove security properties of Java code. The machine-assisted part of the proof is conducted with KeY, an interactive theorem prover.

The proof includes a correctness result for the construction and evaluation of garbled circuits. This is particularly interesting since checking such an implementation by hand would be very tedious and error-prone. Although we stick to the secure two-party-computation of an n-bit AND in this paper, our approach is modular, and we explain how our techniques can be applied to other functions.

To prove the security of the protocol for an honest-but-curious sender and an honest receiver, we use the framework presented by Kuesters et al. for the cryptographic verification of Java programs. As part of our work, we add oblivious transfer to the set of cryptographic primitives supported by the framework. This is a general contribution beyond our results for concrete Java code.

00:17 [Pub][ePrint] THE NEW HEURISTIC GUESS AND DETERMINE ATTACK ON SNOW 2.0 STREAM CIPHER, by Mohammad Sadegh Nemati Nia, Ali Payandeh

  SNOW 2.0 is a word oriented stream cipher that has been selected as a standard stream cipher on ISO/IEC 18033-4. One of the general attacks on the stream ciphers is Guess and Determine attack. Heuristic GD attack is GD attack that represents an algorithmic method to analysis the stream cipher with the variables of the same size. The results of HGD attack on TIPSY, SNOW 1.0 and SNOW 2.0 stream ciphers led to less complexity rather than previously known GD attacks. In this paper, the authors use of two auxiliary polynomials to improve HGD attack on SNOW 2.0. This attack reduces the complexity and the size of the guessed basis from O (2265) to O (2192) and 8 to 6, respectively, compared with previous ad-hoc and heuristic GD attacks.

00:17 [Pub][ePrint] The M3dcrypt Password Scheme, by Isaiah Makwakwa

  M3dcrypt is a password authentication scheme built around the ad-

vanced Ecryption Standard (AES) and the arcfour pseudorandom func-

tion. It uses up to 256-bit pseudorandom salt values and supports 48-byte passwords.

00:17 [Pub][ePrint] (Nothing else) MATor(s): Monitoring the Anonymity of Tor\'s Path Selection, by Michael Backes and Aniket Kate and Sebastian Meiser and Esfandiar Mohammadi

  In this paper we present MATor: a framework for rigorously assessing the degree of anonymity in the Tor network. The framework explicitly addresses how user anonymity is impacted by real-life characteristics of actually deployed Tor, such as its path selection algorithm, Tor consensus data, and the preferences and the connections of the user. The anonymity assessment is based on rigorous anonymity bounds that are derived in an extension of the AnoA framework (IEEE CSF 2013). We show how to apply MATor on Tor\'s publicly available consensus and server descriptor data, thereby realizing the first real-time anonymity monitor. Based on experimental evaluations of this anonymity monitor on Tor Metrics data, we propose an alternative path selection algorithm that provides stronger anonymity guarantees without decreasing the overall performance of the Tor network.

00:17 [Pub][ePrint] Fully Secure Attribute Based Encryption from Multilinear Maps, by Sanjam Garg and Craig Gentry and Shai Halevi and Mark Zhandry

  We construct the first fully secure attribute based encryption (ABE) scheme that can handle access control policies expressible as polynomial-size circuits. Previous ABE schemes for general circuits were proved secure only in an unrealistic selective security model, where the adversary is forced to specify its target before seeing the public parameters, and full security could be obtained only by complexity leveraging, where the reduction succeeds only if correctly guesses the adversary\'s target string x*, incurring a 2^{|x^*|} loss factor in the tightness of the reduction.

At a very high level, our basic ABE scheme is reminiscent of Yao\'s garbled circuits, with 4 gadgets per gate of the circuit, but where the decrypter in our scheme puts together the appropriate subset of gate gadgets like puzzle pieces by using a cryptographic multilinear map to multiply the pieces together. We use a novel twist of Waters\' dual encryption methodology to prove the full security of our scheme. Most importantly, we show how to preserve the delicate information-theoretic argument at the heart of Waters\' dual system by enfolding it in an information-theoretic argument similar to that used in Yao\'s garbled circuits.

00:17 [Pub][ePrint] Privacy and Imperfect Randomness, by Yevgeniy Dodis and Yanqing Yao

  We revisit the impossibility of a variety of cryptographic tasks including privacy and differential privacy with imperfect randomness. For traditional notions of privacy, such as security of encryption, commitment or secret sharing schemes, dramatic impossibility results are known [MP90,DOPS04]. In fact, they are true even if the imperfect source is modeled as a seemingly very \"nice and friendly\" Santha-Vazirani (SV) source. The SV source outputs a sequence of bits r_1,r_2,..., where each r_i has almost 1 full bit of fresh entropy conditioned on the previous bits r_1,...,r_{i-1}. Moreover, Bosley and Dodis [BD07] gave strong evidence that many traditional privacy tasks (e.g., encryption) inherently require an \"extractable\" source of randomness.

The common interpretation of these negative results is that traditional privacy is impossible even with \"very structured\" imperfect sources. Somewhat surprisingly, Dodis et al. [DLMV12] put a slight dent in this belief, by showing that non-trivial *differential* privacy is possible with SV sources. This suggested a qualitative gap between traditional and differential privacy, and left open the question if differential privacy is possible with more realistic (i.e., less structured) sources than the SV sources. Motivated by solving this question, we abstract and generalize prior techniques for showing impossibility results for achieving privacy with various imperfect sources of randomness. In particular, we introduce the concepts of separability and expressivity of a given imperfect source as a measure of its \"imperfectness\", and show the

following results:

(1) Separability implies expressivity;

(2) Low levels of expressivity (and, thus, separability) generically imply strong impossibility results for both traditional and *differential* privacy;

(3) Existing (and quantitatively improved!) impossibility results for traditional privacy with respect to known imperfect sources easily follow as corollaries of our unified framework; New results follow equally easily.

(4) Although, unsurprisingly, our new impossibility results for differential privacy (barely) miss the highly structured SV sources, they come back *extremely quickly* once the source becomes slightly more realistic. E.g., if a small number of bits r_i can be fully determined by the previous bits;

(5) Any imperfect source allowing (either traditional or differential) privacy admits a certain type of deterministic bit extraction. (This result is incomparable to the result of [BD07].)

Overall, our results unify and strengthen the belief that, for the most part, privacy with imperfect randomness is impossible, unless the source is (almost) deterministically extractable.

00:17 [Pub][ePrint] KT-ORAM: A Bandwidth-efficient ORAM Built on K-ary Tree of PIR Nodes, by Jinsheng Zhang and Qiumao Ma and Wensheng Zhang and Daji Qiao

  This paper proposes KT-ORAM, a new hybrid ORAM-PIR construction, to preserve a client\'s access pattern to his/her outsourced data. The construction organizes the server storage as a $k$-ary tree with each node acting as a fully-functional PIR storage, and adopts a novel \\emph{delayed eviction} technique to optimize the eviction process. KT-ORAM is proved to preserve the data access pattern privacy with a negligibly-small failure probability of $O(N^{-\\log N})$. KT-ORAM requires only a constant-size local storage at the client side, and has an asymptotical communication cost of $O(\\frac{\\log^2 N}{\\log\\log N})$ (the best known asymptotical result of ORAM~\\cite{Kush12}) when $k=\\log N$. The communication cost of KT-ORAM is also compared with two state-of-the-art ORAM constructions, B-ORAM~\\cite{Kush12} and P-PIR~\\cite{MaBl14}, which share the same assumption of constant-size client-side storage as KT-ORAM, in practical scenarios. The results show that, KT-ORAM outperforms these constructions.

21:17 [Pub][ePrint] Private Web Search with Constant Round Efficiency, by Heeyeon Joo and Myungsun Kim

  Web search is increasingly becoming an essential activity as it is frequently the most effective and convenient way of finding information. However, it can be a threat for the privacy of users because their queries may reveal their sensitive information. Private web search (PWS) solutions allow users to find information in the Internet while preserving their privacy. In particular, cryptography-based PWS (CB-PWS) systems provide strong privacy guarantees.

This paper introduces a constant-round CB-PWS protocol which remains computationally efficient, compared to known CB-PWS systems. Our construction is comparable to similar solutions regarding users\' privacy.

21:17 [Pub][ePrint] On the Limits of Computational Fuzzy Extractors, by Kenji Yasunaga and Kosuke Yuzawa

  Fuller et.~al (Asiacrypt 2013) studied on computational fuzzy extractors,

and showed, as a negative result, that the existence of a computational ``secure sketch\'\'

implies the existence of an information-theoretically secure sketch with slightly weaker parameters.

In this work, we show a similar negative result such that, under some computational assumption,

the existence of a computational fuzzy extractor also implies the existence of

an information-theoretic fuzzy extractor with slightly weaker parameters.

The assumption is that the generation procedure of the fuzzy extractor can be efficiently invertible.

This result implies that to circumvent the limitations of information-theoretic fuzzy extractors,

we need to employ computational fuzzy extractors in which the generation procedure cannot be efficiently invertible.