*18:17* [Pub][ePrint]
Cryptography from Compression Functions: The UCE Bridge to the ROM, by Mihir Bellare and Viet Tung Hoang and Sriram Keelveedhi
This paper suggests and explores the use of UCE security for the task ofturning VIL-ROM schemes into FIL-ROM ones. The benefits we offer over

indifferentiability, the current leading method for this task, are the ability

to handle multi-stage games and greater efficiency. The paradigm consists of

(1) Showing that a VIL UCE function can instantiate the VIL RO in the scheme,

and (2) Constructing the VIL UCE function given a FIL random oracle. The main

technical contributions of the paper are domain extension transforms that

implement the second step. Leveraging known results for the first step we

automatically obtain FIL-ROM constructions for several primitives whose

security notions are underlain by multi-stage games. Our first domain extender

exploits indifferentiability, showing that although the latter does not work

directly for multi-stage games it can be used indirectly, through UCE, as a

tool for this end. Our second domain extender targets performance. It is

parallelizable and shown through implementation to provide significant

performance gains over indifferentiable domain extenders.

*21:17* [Pub][ePrint]
On Constrained Implementation of Lattice-based Cryptographic Primitives and Schemes on Smart Cards, by Ahmad Boorghany and Siavash Bayat Sarmadi and Rasool Jalili
Most lattice-based cryptographic schemes with a security proof suffer from large key sizes and heavy computations. This is also true for the simpler case of authentication protocols which are used on smart cards, as a very-constrained computing environment.Recent progress on ideal lattices has significantly improved the efficiency, and made it possible to implement practical lattice-based cryptography on constrained devices. However, to the best of our knowledge, no previous attempts were made to implement lattice-based schemes on smart cards.

In this paper, we provide the results of our implementation of several state-of-the-art lattice-based authentication protocols on smart cards and a microcontroller widely used in smart cards. Our results show that only a few of the proposed lattice-based authentication protocols can be implemented using limited resources of such constrained devices, however, cutting-edge ones are suitably-efficient to be used practically on smart cards.

Moreover, we have implemented fast Fourier transform (FFT) and discrete Gaussian sampling with different typical parameters sets, as well as versatile lattice-based public-key encryptions. These results have noticeable points which help to design or optimize lattice-based schemes for constrained devices.

*21:17* [Pub][ePrint]
On the Connection between Leakage Tolerance and Adaptive Security, by Jesper Buus Nielsen and Daniele Venturi and Angela Zottarel
We revisit the context of leakage-tolerant interactive protocols asdefined by Bitanski, Canetti and Halevi (TCC 2012). Our contributions

can be summarized as follows:

\\begin{enumerate}

\\item

For the purpose of secure message transmission, any encryption

protocol with message space $\\cM$ and secret key space $\\cSK$

tolerating poly-logarithmic leakage on the secret state of the

receiver must satisfy $|\\cSK| \\ge (1-\\epsilon)|\\cM|$, for every $0

*16:01* [Job][New]
Post-Doc, *Cryptolux, University of Luxembourg*
The Cryptolux team of the Computer Science and Communications research unit of the University of Luxembourg is looking for a postdoc in Cryptography and Information Security. In particular we are interested in candidates who are experts in one of the following topics:- Symmetric Cryptography
- Privacy and Anonymity (Tor,I2P, etc.)
- Digital Currencies
- Reverse engineering, code obfuscation
- Network Security

Interested candidates are invited to submit their application by email to *lacs.application AT gmail.com*. The application material should contain a cover letter explaining the candidate\\\'s expertise, motivation and research interests, a CV (including photo, information about the obtained degrees, overall GPA in B.Sc. and M.Sc., transcript of grades for relevant courses). We expect proven expertise in your area of research by publications at top conferences, successful participation in competitions and challenges, etc.

*06:17* [Pub][ePrint]
RSA meets DPA: Recovering RSA Secret Keys from Noisy Analog Data, by Noboru Kunihiro and Junya Honda
We discuss how to recover RSA secret keys from noisy analog dataobtained through physical attacks such as cold boot and side channel

attacks. Many studies have focused on recovering correct secret keys

from noisy binary data. Obtaining noisy binary keys typically involves

first observing the analog data and then obtaining the binary data

through quantization process that discards much information pertaining

to the correct keys. In this paper, we propose two algorithms for

recovering correct secret keys from noisy analog data, which are

generalized variants of Paterson et al.\'s algorithm. Our algorithms

fully exploit the analog information. More precisely, consider observed

data which follows the Gaussian distribution

with mean $(-1)^b$ and variance $\\sigma^2$ for a secret key bit $b$.

We propose a polynomial time algorithm based on

the maximum likelihood approach and show that it can recover secret keys

if $\\sigma < 1.767$. The first algorithm works only if the noise

distribution is explicitly known. The second algorithm does not need to

know the explicit form of the noise distribution. We implement the first

algorithm and verify its effectiveness.