International Association for Cryptologic Research

IACR News Central

Get an update on changes of the IACR web-page here. For questions, contact newsletter (at) You can also receive updates via:

To receive your credentials via mail again, please click here.

You can also access the full news archive.

Further sources to find out about changes are CryptoDB, ePrint RSS, ePrint Web, Event calender (iCal).

18:17 [Pub][ePrint] Realizing Pico: Finally No More Passwords!, by Jens Hermans and Roel Peeters

  In 2011 Stajano proposed Pico, a secure and easy-to-use alternative for passwords. Among the many proposals in this category, Pico stands out by being creative and convincing. However, the description as published leaves some details unspecified, and to the best of our knowledge the complete system has not yet been tested. This work presents detailed specifications and future-proof security protocols for Pico. Moreover, we present the first robust and efficient Pico implementation. Our implementation allows to further mature the Pico concept and can be used for large scale usability evaluations at negligible cost.

18:17 [Pub][ePrint] On powers of codes, by Ignacio Cascudo and Ronald Cramer and Diego Mirandola and Gilles Z\\\'emor

  Given a linear code $C$, one can define the $d$-th power of $C$ as the span of all componentwise products of $d$ elements of $C$. A power of $C$ may quickly fill the whole space. Our purpose is to answer the following question: does the square of a code ``typically\'\' fill the whole space? We give a positive answer, for codes of dimension $k$ and length roughly $\\frac{1}{2}k^2$ or smaller. The proof uses random coding and combinatorial arguments, together with algebraic tools involving the precise computation of the number of quadratic forms of a given rank, and the number of their zeros.

15:55 [Event][New] ICICS2014: The 16th International Conference on Information & Communications Security

  Submission: 15 August 2014
Notification: 15 September 2014
From December 16 to December 17
Location: Hong Kong, China
More Information:

21:17 [Pub][ePrint] On Constrained Implementation of Lattice-based Cryptographic Primitives and Schemes on Smart Cards, by Ahmad Boorghany and Siavash Bayat Sarmadi and Rasool Jalili

  Most lattice-based cryptographic schemes with a security proof suffer from large key sizes and heavy computations. This is also true for the simpler case of authentication protocols which are used on smart cards, as a very-constrained computing environment.

Recent progress on ideal lattices has significantly improved the efficiency, and made it possible to implement practical lattice-based cryptography on constrained devices. However, to the best of our knowledge, no previous attempts were made to implement lattice-based schemes on smart cards.

In this paper, we provide the results of our implementation of several state-of-the-art lattice-based authentication protocols on smart cards and a microcontroller widely used in smart cards. Our results show that only a few of the proposed lattice-based authentication protocols can be implemented using limited resources of such constrained devices, however, cutting-edge ones are suitably-efficient to be used practically on smart cards.

Moreover, we have implemented fast Fourier transform (FFT) and discrete Gaussian sampling with different typical parameters sets, as well as versatile lattice-based public-key encryptions. These results have noticeable points which help to design or optimize lattice-based schemes for constrained devices.

21:17 [Pub][ePrint] Ideal Social Secret Sharing Using Birkhoff Interpolation Method, by Nasrollah Pakniat and Ziba Eslami and Mehrdad Nojoumian

  The concept of social secret sharing (SSS) was introduced in 2010 by Nojoumian et al. [1,2]. In this scheme, the number of shares allocated to each party depends on the players reputation and the way he interacts with other parties. In other words, weights of the players are periodically adjusted such that cooperative participants receive more shares compared to non-cooperative parties. As our contribution, we propose an ideal social secret sharing (Ideal-SSS) in which the size of each player\'s share is equal to the size of the secret. This property will be achieved using hierarchical threshold secret sharing rather than weighted secret sharing. We show that the proposed scheme is secure in a passive adversary model. Compared to SSS, our proposed scheme is more efficient in terms of the share size, communication complexity and computational complexity of the \"sharing\" protocol. However, the \"social tuning\" and \"reconstruction\" protocols of SSS are computationally more efficient than those of the proposed scheme. Depending on the number of execution of social tuning protocol, this might be a reasonable compromise because the reconstruction protocol is executed only once throughout the secret\'s lifetime.

21:17 [Pub][ePrint] On the Classification of Finite Boolean Functions up to Fairness, by Nikolaos Makriyannis

  Two parties, $P_1$ and $P_2$, wish to jointly compute some function $f(x,y)$ where $P_1$ only knows $x$, whereas $P_2$ only knows $y$. Furthermore, and most importantly, the parties wish to reveal only what the output suggests. Function $f$ is said to be computable with \\emph{complete fairness} if there exists a protocol computing $f$ such that whenever one of the parties obtains the correct output, then both of them do. The only protocol known to compute functions with complete fairness is the one of Gordon et al (STOC 2008). The functions in question are finite, Boolean, and the output is shared by both parties. The classification of such functions up to fairness may be a first step towards the classification of all functionalities up to fairness. Recently, Asharov (TCC 2014) identifies two families of functions that are computable with fairness using the protocol of Gordon et al and another family for which the protocol (potentially) falls short. Surprisingly, these families account for almost all finite Boolean functions. In this paper, we expand our understanding of what can be computed fairly with the protocol of Gordon et al. In particular, we fully describe which functions the protocol computes fairly and which it (potentially) does not. Furthermore, we present a new class of functions for which fair computation is outright impossible. Finally, we confirm and expand Asharov\'s observation regarding the fairness of finite Boolean functions: almost all functions $f:X\\times Y\\rightarrow \\{0,1\\}$ for which $|X|\\neq |Y|$ are fair, whereas almost all functions for which $|X|= |Y|$ are not.

21:17 [Pub][ePrint] On the Connection between Leakage Tolerance and Adaptive Security, by Jesper Buus Nielsen and Daniele Venturi and Angela Zottarel

  We revisit the context of leakage-tolerant interactive protocols as

defined by Bitanski, Canetti and Halevi (TCC 2012). Our contributions

can be summarized as follows:



For the purpose of secure message transmission, any encryption

protocol with message space $\\cM$ and secret key space $\\cSK$

tolerating poly-logarithmic leakage on the secret state of the

receiver must satisfy $|\\cSK| \\ge (1-\\epsilon)|\\cM|$, for every $0

16:01 [Job][New] Post-Doc, Cryptolux, University of Luxembourg

  The Cryptolux team of the Computer Science and Communications research unit of the University of Luxembourg is looking for a postdoc in Cryptography and Information Security. In particular we are interested in candidates who are experts in one of the following topics:

  • Symmetric Cryptography
  • Privacy and Anonymity (Tor,I2P, etc.)
  • Digital Currencies
  • Reverse engineering, code obfuscation
  • Network Security

Interested candidates are invited to submit their application by email to lacs.application AT The application material should contain a cover letter explaining the candidate\\\'s expertise, motivation and research interests, a CV (including photo, information about the obtained degrees, overall GPA in B.Sc. and M.Sc., transcript of grades for relevant courses). We expect proven expertise in your area of research by publications at top conferences, successful participation in competitions and challenges, etc.

06:17 [Pub][ePrint] RSA meets DPA: Recovering RSA Secret Keys from Noisy Analog Data, by Noboru Kunihiro and Junya Honda

  We discuss how to recover RSA secret keys from noisy analog data

obtained through physical attacks such as cold boot and side channel

attacks. Many studies have focused on recovering correct secret keys

from noisy binary data. Obtaining noisy binary keys typically involves

first observing the analog data and then obtaining the binary data

through quantization process that discards much information pertaining

to the correct keys. In this paper, we propose two algorithms for

recovering correct secret keys from noisy analog data, which are

generalized variants of Paterson et al.\'s algorithm. Our algorithms

fully exploit the analog information. More precisely, consider observed

data which follows the Gaussian distribution

with mean $(-1)^b$ and variance $\\sigma^2$ for a secret key bit $b$.

We propose a polynomial time algorithm based on

the maximum likelihood approach and show that it can recover secret keys

if $\\sigma < 1.767$. The first algorithm works only if the noise

distribution is explicitly known. The second algorithm does not need to

know the explicit form of the noise distribution. We implement the first

algorithm and verify its effectiveness.

18:17 [Pub][ePrint] Reversing Stealthy Dopant-Level Circuits, by Takeshi Sugawara and Daisuke Suzuki and Ryoichi Fujii and Shigeaki Tawa and Ryohei Hori and Mitsuru Shiozaki and Takeshi Fujino

  A successful detection of the stealthy dopant-level circuit (trojan), proposed by Becker et al. at CHES 2013, is reported. Contrary to an assumption made by Becker et al., dopant types in active region are visible with either scanning electron microscopy (SEM) or focused ion beam (FIB) imaging. The successful measurement is explained by an LSI failure analysis technique called the passive voltage contrast. The experiments are conducted by measuring a dedicated chip. The chip uses the diffusion programmable device: an anti-reverse-engineering technique by the same principle as the stealthy dopant-level trojan. The chip is delayered down to the contact layer, and images are taken with (1) an optical microscope, (2) SEM, and (3) FIB. As a result, the four possible dopant-well combinations, namely (i) p+/n-well, (ii) p+/p-well, (iii) n+/n-well and (iv) n+/p-well are distinguishable in the SEM images. Partial but sufficient detection is also achieved with FIB. Although the stealthy dopant-level circuits are visible, however, they potentially make a detection harder. That is because the contact layer should be measured. We show that imaging the contact layer is at most 16-times expensive than that of a metal layer in terms of the number of images

18:17 [Pub][ePrint] Privacy preserving delegated word search in the cloud, by Kaoutar Elkhiyaoui and Melek Onen and Refik Molva

  In this paper, we address the problem of privacy preserving delegated word search in the cloud. We consider a scenario where a data owner outsources its data to a cloud server and delegates the search capabilities to a set of third party users. In the face of semi-honest cloud servers, the data owner does not want to disclose any information about the outsourced data; yet it still wants to benefit from the highly parallel cloud environment. In addition, the data owner wants to ensure that delegating the search functionality to third parties does not allow these third parties to jeopardize the confidentiality of the outsourced data, neither does it prevent the data owner from efficiently revoking the access of these authorized parties. To these ends, we propose a word search protocol that builds upon techniques of keyed hash functions, oblivious pseudo-random functions and Cuckoo hashing to construct a searchable index for the outsourced data, and uses private information retrieval of short information to guarantee that word search queries do not reveal any information about the data to the cloud server. Moreover, we combine attribute-based encryption and oblivious pseudo-random functions to achieve an efficient revocation of authorized third parties. The proposed scheme is suitable for the cloud as it

can be easily parallelized.