International Association for Cryptologic Research

IACR News Central

Get an update on changes of the IACR web-page here. For questions, contact newsletter (at) You can also receive updates via:

To receive your credentials via mail again, please click here.

You can also access the full news archive.

Further sources to find out about changes are CryptoDB, ePrint RSS, ePrint Web, Event calender (iCal).

15:17 [Pub][ePrint] Optimized Implementation of General Secret Sharing Scheme , by Lein Harn and Ching-Fang Hsu*

  Secret sharing (SS) is one of the most important cryptographic primitives used for data outsourcing. The (t, n) SS was introduced by Shamir and Blakley separately in 1979. The secret sharing policy of the (t, n) threshold SS is far too simple for many applications because it assumes that every shareholder has equal privilege to the secret or every share-holder is equally trusted. Ito et al. introduced the concept of a general secret sharing scheme (GSS). In a GSS, a secret is divided among a set of shareholders in such a way that any \"qualified\" subset of shareholders can access the secret, but any \"unqualified\" subset of shareholders cannot access the secret. The secret access structure of GSS is far more flexible than threshold SS. In this paper, we propose an optimized implementation of GSS. Our proposed scheme first uses Boolean logic to derive two important subsets, one is called which is the minimal positive access subset and the other is called which is the maximal negative access subset, of a given general secret sharing structure. Then, condi-tions of parameters of a GSS are established based on these two important subsets. Fur-thermore, integer linear/non-linear programming is used to optimize the size of shares of a GSS. The complexity of linear/non-linear programming is where is the number of shares generated by the dealer. This proposed design can be applied to implement GSS based on any classical SS. We use two GSSs, one is based on Shamir\'s weighted SS (WSS) using linear polynomial and the other is based on Asmuth-Bloom\'s SS using Chinese Re-mainder Theorem (CRT), to demonstrate our design. In comparing with existing GSSs, our proposed scheme is more efficient and can be applied to all classical SSs.

06:17 [Pub][ePrint] Faster Private Set Intersection based on OT Extension, by Benny Pinkas and Thomas Schneider and Michael Zohner

  Private set intersection (PSI) allows two parties to compute the intersection of their sets without revealing any information about items that are not in the intersection. It is one of the best studied applications of secure computation and many PSI protocols have been proposed. However, the variety of existing PSI protocols makes it

difficult to identify the solution that performs best in a respective scenario, especially since they were not all implemented and compared in the same setting.

In this work, we give an overview on existing PSI protocols that are secure against semi-honest adversaries. We take advantage of the most recent efficiency improvements in OT extension to propose significant optimizations to previous PSI protocols and to suggest a new PSI protocol whose runtime is superior to that of existing protocols. We compare the performance of the protocols both theoretically and experimentally, by implementing all protocols on the same platform, and give recommendations on which protocol to use in a particular setting.

06:17 [Pub][ePrint] Improved Differential Attacks on Reduced SIMON Versions, by Ning Wang, Xiaoyun Wang, Keting Jia, Jingyuan Zhao

  SIMON is a family of lightweight block ciphers which are designed by the U.S National Security Agency in 2013. In this paper, we improve the previous differential attacks on SIMON family of block ciphers by considering some bit-difference equations. Combining with some new observations on key guess policies of SIMON family, we mount differential attacks on 21-round SIMON32/64, 22-round SIMON$48/72$, 22-round SIMON48/96, 28-round SIMON$64/96$ and SIMON$64/128$ with time complexity about $2^{46}$, $2^{63}$, $2^{71}$, $2^{60}$ and $2^{60}$ encryptions respectively. As far as we know, these results are the best attacks on reduced-round SIMON versions.

06:17 [Pub][ePrint] Related Key Secure PKE from Hash Proof Systems, by Dingding Jia, Bao Li, Xianhui Lu, Qixiang Mei

  In this paper, we present a construction of public key encryption

secure against related key attacks from hash proof systems in the

standard model. We show that the schemes presented by Jia et

al. (Provsec2013) are special cases of our general theory, and also

give other instantiations based on the QR and DCR assumptions. To

fulfill the related key security, we require the hash proof systems

to satisfy the key homomorphism and computational finger-printing properties. Compared with the construction given by Wee (PKC2012), our construction removed the use of one-time


18:17 [Pub][ePrint] 4-point Attacks with Standard Deviation Analysis on A-Feistel Schemes, by Valerie Nachef and Jacques Patarin and Emmanuel Volte

  A usual way to construct block ciphers is to apply several rounds of a given structure. Many kinds of attacks are

mounted against block ciphers. Among them, differential and linear attacks are widely used. In~\\cite{V98,V03}, it is

shown that ciphers that achieve perfect pairwise decorrelation are secure against linear and differential attacks. It is possible to obtain such schemes by introducing at least one random affine permutation as a round function in the design of the scheme.

In this paper, we study attacks on schemes based on classical Feistel schemes where we introduce one or two affine


Since these schemes resist against linear and differential

attacks, we will study stronger attacks based on specific equations on 4-tuples of

cleartext/ciphertext messages. We give the

number of messages needed to distinguish a permutation produced by such schemes from a random

permutation, depending on the number of rounds used in the schemes, the number and the position of the random affine permutations introduced in the schemes.

15:17 [Pub][ePrint] Polynomial Spaces: A New Framework for Composite-to-Prime-Order Transformations, by Gottfried Herold and Julia Hesse and Dennis Hofheinz and Carla Ràfols and Andy Rupp

  At Eurocrypt 2010, Freeman presented a framework to convert cryptosystems based on composite-order groups into ones that use prime-order groups. Such a transformation is interesting not only from a conceptual point of view, but also since for relevant parameters, operations in prime-order groups are faster than composite-order operations by an order of magnitude. Since Freeman\'s work, several other works have shown improvements, but also lower bounds on the efficiency of such conversions.

In this work, we present a new framework for composite-to-prime-order conversions. Our framework is in the spirit of Freeman\'s work; however, we develop a different, ``polynomial\'\' view of his approach, and revisit several of his design decisions. This eventually leads to significant efficiency improvements, and enables us to circumvent previous lower bounds. Specifically, we show how to implement Groth-Sahai proofs in a prime-order environment (with a symmetric pairing) almost twice as efficiently as the state of the art.

We also show that our new conversions are optimal in a very broad sense. Besides, our conversions also apply in settings with a multilinear map, and can be instantiated from a variety of computational assumptions (including, e.g., the $k$-linear assumption).

12:59 [News] Calls for IACR Cryptology School Proposals


Starting in 2014, IACR will sponsor a small number of Cryptology Schools providing intensive training on clearly identified topics in cryptology. The aim of this program is to develop awareness and increased capacity for research in cryptology.

A Cryptology School is typically held full-time for 4-5 days of intensive learning and constitutes an efficient way to provide high-quality training for graduate students, as well as for professionals. Attendance should be open to anyone who is interested and qualified. In order to facilitate learning, a school is usually taught by a few domain experts with a focus on educating the audience rather than impressing with results. In line with the mission of IACR, a Cryptology School should enable the audience to advance the theory and practice of cryptology and related fields.

There are two rounds of submissions every year. The submission deadlines are:

  • December 31st of year X-1: For schools that take place between March of year X and February of year X + 1.
  • June 30th of year X: For schools that take place between September of year X and August of year X + 1.
Submissions must be sent by email to schools /at/

For more information about this new program and how to prepare a proposal, please refer to

12:17 [Pub][ePrint] RPKI vs ROVER: Comparing the Risks of BGP Security Solutions, by Aanchal Malhotra and Sharon Goldberg

  Route Origin Verification (ROVER), a mechanism for securing interdomain routing with BGP, is a proposed alternative to the Resource Public Key Infrastructure (RPKI). While the RPKI requires the design and deployment of a completely new security infrastructure, ROVER leverages existing reverse DNS and DNSSEC deployments. Both ROVER and RPKI are based on a hierarchy of authorities that are trusted to provide information about the routing system.

It has been argued recently that misconfigurations or compromises of the RPKI\'s trusted authorities can present new risks to the routing system. Meanwhile, the advocates of ROVER claim that it provides a \"fail-safe\" approach, where the Internet will continue to work as it is even when ROVER fails. This poster therefore compares the impact of ROVER failures to those of the RPKI.

12:08 [Event][New] ICMC 2015: The second International Conference on Mathematics and Computing

  Submission: 16 July 2014
From January 5 to January 10
Location: Haldia, India
More Information:

06:17 [Pub][ePrint] Improved Generic Attacks Against Hash-based MACs and HAIFA, by Itai Dinur and Gaëtan Leurent

  The security of HMAC (and similar hash-based MACs) against

state-recovery and universal forgery attacks was very recently shown to

be suboptimal, following a series of surprising results by Leurent et

al. and Peyrin et al. These results have shown that such powerful

attacks require much less than $2^{\\ell}$ computations, contradicting

the common belief (where $\\ell$ denotes the internal state size). In

this work, we revisit and extend these results, with a focus on

properties of concrete hash functions such as a limited message length,

and special iteration modes.

We begin by devising the first state-recovery attack on HMAC with a

HAIFA hash function (using a block counter in every compression function

call), with complexity $2^{4\\ell/5}$. Then, we describe improved

trade-offs between the message length and the complexity of a

state-recovery attack on HMAC. Consequently, we obtain improved attacks

on several HMAC constructions used in practice, in which the the hash

functions limit the maximal message length (e.g., SHA-1 and SHA-2).

Finally, we present the first universal forgery attacks, which can be

applied with short message queries to the MAC oracle. In particular, we

devise the first universal forgery attacks applicable to SHA-1 and


06:17 [Pub][ePrint] Secure Outsourced Computation of the Characteristic Polynomial and Eigenvalues of Matrix, by Xing Hu and Chunming Tang

  Linear algebra plays an important role in computer science, especially in cryptography.Numerous cryptog-raphic protocols, scientific computations, and numerical computations are based on linear algebra. Many linear algebra tasks can be reduced to some core problems, such as matrix multiplication, determinant of matrix and the characteristic polynomial of matrix. However, it is difficult to execute these tasks independently for client whose computation abilities are weaker than polynomial-time computational ability. Cloud Computing is a novel economical paradigm which provides powerful computational resources that enables resources-constrained client to outsource their mass computing tasks to the cloud.

In this paper, we propose a new verifiable and secure outsourcing protocol for the problem of computing the characteristic polynomial and eigenvalues of matrix. These protocols are not only efficient and secure, but also unnecessary for any cryptographic assumption.