*13:17*[Pub][ePrint] Practical Dual-Receiver Encryption---Soundness, Complete Non-Malleability, and Applications, by Sherman S.M. Chow and Matthew Franklin and Haibin Zhang

We reformalize and recast dual-receiver encryption (DRE) proposed in CCS \'04, a public-key encryption (PKE) scheme for encrypting to two independent recipients in one shot. We start by defining the crucial soundness property for DRE, which ensures that two recipients will get the same decryption result. While conceptually simple, DRE with soundness turns out to be a powerful primitive for various goals for PKE, such as complete non-malleability (CNM) and plaintext-awareness (PA). We then construct practical DRE schemes without random oracles under the Bilinear Decisional Diffie-Hellman assumption, while prior approaches rely on random oracles or inefficient non-interactive zero-knowledge proofs. Finally, we investigate further applications or extensions of DRE, including DRE with CNM, combined use of DRE and PKE, strengthening two types of PKE schemes with plaintext equality test, off-the-record messaging with a stronger notion of deniability, etc.