*07:17* [Pub][ePrint]
Wide-weak Privacy Preserving RFID Mutual Authentication Protocol, by Raghuvir Songhela and Manik Lal Das
Radio Frequency IDentification (RFID) systems are gaining enormousinterests at industry due to their vast applications such as supply chain, access control, inventory, transport, health care and home appliances. Although tag identification is the primary security goal of an RFID system, privacy issue is equally, even more, important concern in RFID system because of pervasiveness of RFID tags. Over the years, many protocols have been proposed for RFID tags\' identification using different cryptographic primitives. It has been observed that most of them provide tags\' identification, but they fail to preserve tags\' privacy. It has been also proven that public-key primitives are essential for strong privacy and security

requirements in RFID systems. In this paper, we present a mutual authentication protocol for RFID systems using elliptic curves arithmetic.

Precisely, the proposed protocol provides narrow-strong and wide-weak

privacy and resists tracking attacks under standard complexity assumption. The protocol is compared with related works and found efficient in comparison to others.

*07:17* [Pub][ePrint]
Improved Authenticity Bound of EAX, and Refinements, by Kazuhiko Minematsu and Stefan Lucks and Tetsu Iwata
EAX is a mode of operation for blockciphers to implement an authenticated encryption. The original paper of EAX proved that EAX is unforgeable up to $O(2^{n/2})$ data with one verification query. However, this generally guarantees a rather weak bound for the unforgeability under multiple verification queries, i.e., only $(2^{n/3})$ data is acceptable. This paper provides an improvement over the previous security proof, by showing that EAX is unforgeable up to $O(2^{n/2})$ data with multiple verification queries. Our security proof is based on the techniques appeared in a paper of FSE 2013 by Minematsu et al. which studied the security of a variant of EAX called EAX-prime.

We also provide some ideas to reduce the complexity of EAX while keeping our new security bound. In particular, EAX needs three blockcipher calls and keep them in memory as a pre-processing, and our proposals can effectively reduce three calls to one call. This would be useful when computational power and memory are constrained.

*07:17* [Pub][ePrint]
A fast integer-based batch full-homomorphic encryption scheme over finite field, by Long Zhang and Qiuling Yue
In view of the problems that the plaintext space is too small in the existing schemes. In this paper, a new improved scheme is presented by improving the DGHV scheme. The plaintext space of the improved scheme is extended from finite prime field $F_{2}$ in the original scheme to finite prime field $F_{p}$. Combine and apply the method of encryption in the batch encryption scheme was proposed in 2013, and the plaintext space is further extended to finite fields $F_{q}$.The new improved scheme encrypts the message by applying the modular mathematical operation

and the Chinese remainder theorem, and the security of the scheme is based on the the difficulty of approximate greatest common divisor problem and the spare subset sum problem. The improved scheme we got has the advantages of encrypt fast, and the size of ciphertext is small. So compared with the original scheme, it is better for practical application.

*04:17* [Pub][ePrint]
Secure Multiparty Computations on BitCoin, by Marcin Andrychowicz and Stefan Dziembowski and Daniel Malinowski and Ćukasz Mazurek
itCoin is a decentralized digital currency, introduced in 2008, that has recently gained noticeable popularity. Its main features are: (a) it lacks a central authority that controls the transactions, (b) the list of transactions is publicly available, and (c) its syntax allows more advanced transactions than simply transferring the money. The goal of this paper is to show how these properties of BitCoin can be used in the area of secure multiparty computation protocols (MPCs).Firstly, we show that the BitCoin system provides an attractive way to construct a version of \"timed commitments\", where the committer has to reveal his secret within a certain time frame, or to pay a fine. This, in turn, can be used to obtain fairness in some multiparty protocols. Secondly, we introduce a concept of multiparty protocols that work \"directly on BitCoin\". Recall that the standard definition of the MPCs guarantees only that the protocol \"emulates the trusted third party\". Hence ensuring that the inputs are correct, and the outcome is respected is beyond the scope of the definition. Our observation is that the BitCoin system can be used to go beyond the standard \"emulation-based\" definition, by constructing protocols that link their inputs and the outputs with the real BitCoin transactions.

As an instantiation of this idea we construct protocols for secure multiparty lotteries using the BitCoin currency, without relying on a trusted authority (one of these protocols uses the BitCoin-based timed commitments mentioned above). Our protocols guarantee fairness for the honest parties no matter how the looser behaves. For example: if one party interrupts the protocol then her money is lost and transferred to the honest participants. Our protocols are practical (to demonstrate it we performed their transactions in the actual BitCoin system), and can be used in real life as a replacement for the online gambling sites. We think that this paradigm can have also other applications. We discuss some of them.