*19:50* [Job][New]
Senior / Scientists, *A*STAR, Data Storage Institute, Singapore*
Highly motivated candidates interested in the area of Cryptography and Theory of Computation in general. Candidates are expected to have thorough undersnding of the state-of-the-art research in Cryptography, Security & Privacy and with the breadth of knowledge of the current issues and recent technology advancements.Research topics include but not necessary limited to New approaches of Computing on Encrypted Data in both theoretical and computational.Requirements

- Deep understanding of theory and implementation of Security protocols and applied cryptography

- Demonstrated expertise with computer architecture

- A strong programming background and experience with functional programming languages is preferred

- Experience in developing prototypes in a research environment

- A demonstrated potential to excel in collaborative research

- PhD in computer science or computer engineering

*10:40* [Job][New]
Computing Security Department Chair, *Rochester Institute of Technology, Rochester, NY, USA*
The Department of Computing Security at the Rochester Institute of Technology invites applications for the position of Department Chair to begin August 2014.In July of 2012, the Department of Computing Security at RIT was established to address critical security challenges that cut across computing disciplines. The department engages in a wide range of research and teaching activities, including: big data analytics, cryptology and covert communications, digital forensics, mobile devices, networks, privacy, security measurement, security pedagogy, sensors, software, and systems security. Through these activities, the department seeks to advance the discipline and to meet the rapidly growing need for computing security professionals.

The successful candidate will be ready to assume the leadership and administrative responsibilities of the department. A key role will be to lead the department in shaping and expanding its research and scholarship profile. Applicants are required to have a Ph.D. or equivalent in a related field and experience commensurate with that of a full professor. Applicants must have demonstrated research excellence in computing security, a track record of external funding, and a strong commitment to undergraduate and graduate education.

Candidates should visit http://careers.rit.edu and search 575BR for specific information about the position and the application process. Refer to http://www.rit.edu/gccis for information about RIT and the B. Thomas Golisano College of Computing and Information Sciences.

RIT is an equal opportunity employer that promotes and values diversity, pluralism, and inclusion. For more information or inquiries, please visit http://www.rit.edu/diversity/titleix.html.

*06:17* [Pub][ePrint]
Obfuscating Conjunctions, by Zvika Brakerski and Guy N. Rothblum
We show how to securely obfuscate the class of conjunction functions (functions like $f(x_1, \\ldots, x_n) = x_1 \\land \\lnot x_4 \\land \\lnot x_6 \\land \\cdots \\land x_{n-2}$). Given any function in the class, we produce an obfuscated program which preserves the input-output functionality of the given function, but reveals nothing else.Our construction is based on multilinear maps, and can be instantiated using the recent candidates proposed by Garg, Gentry and Halevi (EUROCRYPT 2013) and by Coron, Lepoint and Tibouchi (CRYPTO 2013). We show that the construction is secure when the conjunction is drawn from a distribution, under mild assumptions on the distribution. Security follows from multilinear entropic variants of the Diffie-Hellman assumption. We conjecture that our construction is secure for any conjunction, regardless of the distribution from which it is drawn. We offer supporting evidence for this conjecture, proving that our obfuscator is secure for any conjunction against generic adversaries.

*06:17* [Pub][ePrint]
Partially blind password-based signatures using elliptic curves, by Kristian Gjøsteen
Password-based signatures allow a user who can only remember a password to create digital signatures with the help of a server, without revealing the messages to be signed to the server.Certain applications require the ability to disclose part of the message to the server. We define partially blind password-based signatures and construct a scheme based that we prove secure, based on a novel computational problem related to computing discrete logarithms.

Our scheme is based on Nyberg-Rueppel signatures. We give a variant of Nyberg-Rueppel signatures that we prove secure based on our novel computational problem.

Unlike previous password-based signature schemes, our scheme can be instantiated using elliptic curve arithmetic over small prime fields. This is important for many applications

*06:17* [Pub][ePrint]
The Norwegian Internet Voting Protocol, by Kristian Gjøsteen
The Norwegian government ran a trial of internet remote voting during the 2011 local government elections, and will run another trial during the 2013 parliamentary elections. A new cryptographic voting protocol will be used, where so-called return codes allow voters to verify that their ballots will be counted as cast.This paper discusses this cryptographic protocol, and in particular the ballot submission phase.

The security of the protocol relies on a novel hardness assumption similar to Decision Diffie-Hellman. While DDH is a claim that a random subgroup of a non-cyclic group is indistinguishable from the whole group, our assumption is related to the indistinguishability of certain special subgroups. We discuss this question in some detail.

*06:17* [Pub][ePrint]
A note on verifying the APN property, by Pascale Charpin and Gohar M. Kyureghyan
We show that for an arbitrary mapping $F$ on $F_2^n$ to verify that it is APN, it is enough to consider the difference mappings of $F$defined by elements from an hyperplane.

*15:17* [Pub][ePrint]
How To Construct Extractable One-Way Functions Against Uniform Adversaries, by Nir Bitansky and Ran Canetti and Omer Paneth
A function $f$ is extractable if it is possible to algorithmically ``extract,\'\' from any program that outputs a value $y$ in the image of $f,$ a preimage of $y$. When combined with hardness properties such as one-wayness or collision-resistance, extractability has proven to be a powerful tool. However, so far, extractability has not been explicitly shown. Instead, it has only been considered as a non-standard {\\em knowledge assumption} on certain functions.

We give the first construction of extractable one-way functions assuming only standard hardness assumptions (e.g.,subexponential security of Decision Diffie-Hellman or Quadratic Residousity).

Our functions are extractable against adversaries with bounded polynomial advice and unbounded polynomial running time. We then use these functions to construct the first 2-message zero-knowledge arguments and 3-message zero-knowledge arguments of knowledge, against the same class of adversarial verifiers, from essentially the same assumptions.

The construction uses ideas from [Barak, FOCS01] and [Barak, Lindell, and Vadhan, FOCS03], and rely on the recent breakthrough construction of privately verifiable $\\P$-delegation schemes [Kalai, Raz, and Rothblum]. The extraction procedure uses the program evaluating $f$ in a non-black-box way, which we show to be necessary.