*10:17* [Pub][ePrint]
A Verifiable 1-out-of-n Distributed Oblivious Transfer Protocol, by Christian L. F. Corniaux and Hossein Ghodosi
In the various 1-out-of-$n$ distributed oblivious transfer protocols (DOT) designed in an unconditionally secure environment, a receiver contacts $k$ out of $m$ servers to obtain one of the $n$ secrets held by a sender. After a protocol has been executed, the sender has no information on the choice of the receiver and the receiver has no information on the secrets she did not obtain. Likewise, a coalition of $k - 1$ servers is unable to infer any information, neither on the sender\'s secrets, nor on the receiver\'s choice.These protocols are based on a semi-honest model: no mechanism prevents a group of malicious servers from disrupting the protocol such that the secret obtained by the receiver does not correspond to the chosen secret. Actually, to verify the information transmitted by the servers seems to require some properties difficult to reconcile: on one hand the receiver has to collect more information from the servers to discard the incorrect data generated by the malicious servers; on the other hand, if the receiver is allowed to gather more information from the servers, the sender\'s security may be compromised.

We study the first unconditionally secure DOT protocol in the presence of an active adversary who may corrupt up to $k - 1$ servers. In addition to the active adversary, we also assume that the sender may (passively) corrupt up to $k - 1$ servers to learn the choice of the receiver. Similarly, the receiver may (passively) corrupt up to $k - 1$ servers to learn more than the chosen secret. However, we assume that the sender, receiver, and active adversary do not collaborate with each other. Our DOT protocol allows the receiver to contact $4k - 3$ servers to obtain one secret, while the required security is maintained.

*19:17* [Pub][ePrint]
On FHE without bootstrapping, by Aayush Jain
In this work we come up with two fully homomorphic schemes.First, we propose an IND-CPA secure symmetric key homomorphic encryption scheme using multivariate polynomial ring over finite fields. This scheme gives a method of constructing a CPA secure homomorphic encryption scheme from another symmetric deterministic CPA secure scheme. We base the security of the scheme on information theoretic arguments and prove the scheme to be IND-CPA secure, rather than basing security on hard problems like Ideal Membership and Gr\\\"obner basis as seen in most polly cracker based schemes which also use multivariate polynomial rings. This scheme is not compact but has many interesting properties. Second, we also describe another similar symmetric key scheme which is compact, fully homomorphic and doesn\'t require bootstrapping. The scheme is on the lines of the work of Albrecht et.al. (Asiacrypt-2011) and is proven to be bounded CPA secure. Proof is based on Ideal Membership/ Ideal Remainder/Gr\\\"obner basis problem.

*19:17* [Pub][ePrint]
On the Indifferentiability of Key-Alternating Ciphers, by Elena Andreeva and Andrey Bogdanov and Yevgeniy Dodis and Bart Mennink and John P. Steinberger
The Advanced Encryption Standard (AES) is the most widely used block cipher. The high level structure of AES can be viewed as a (10-round) key-alternating cipher, where a t-round key-alternating cipher KA_t consists of a small number $t$ of fixed permutations P_i on n bits, separated by key addition:KA_t(K,m)= k_t + P_t(... k_2 + P_2(k_1 + P_1(k_0 + m))...),

where (k_0,...,k_t) are obtained from the master key K using some key derivation function.

For t=1, KA_1 collapses to the well-known Even-Mansour cipher, which is known to be indistinguishable from a (secret) random permutation, if P_1 is modeled as a (public) random permutation. In this work we seek for stronger security of key-alternating ciphers --- indifferentiability from an ideal cipher --- and

ask the question under which conditions on the key derivation function and for how many rounds t is the key-alternating cipher KA_t indifferentiable from the ideal cipher, assuming P_1,...,P_t are (public) random permutations?

As our main result, we give an affirmative answer for t=5, showing that the 5-round key-alternating cipher KA_5 is indifferentiable from an ideal cipher, assuming P_1,...,P_5 are five independent random permutations, and the key derivation function sets all rounds keys

k_i=f(K), where 0

*16:53* [Job][New]
PhD Positions, *Vernam Lab at WPI, Worcester, MA*
**PhD Positions in Applied Cryptology**The Vernam Lab at WPI in Worcester, MA has open PhD positions in applied cryptology. In particular there are two openings in side channel analysis and countermeasure design and implementation.

Candidates should have a Master’s degree in electronics, computer science or applied mathematics, with strong interest in algorithms and signal processing. Prior experience in side channel analysis and embedded software or hardware design is an asset.

We offer a competitive salary and an international cutting-edge research program in an attractive working environment in the greater Boston area. WPI is one of the highest-ranked technical colleges in the US.