International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 23 June 2022

Poulami Das, Lisa Eckey, Sebastian Faust, Julian Loss, Monosij Maitra
ePrint Report ePrint Report
Byzantine agreement (BA) is a fundamental primitive in distributed systems and has received huge interest as an important building block for blockchain systems. Classical byzantine agreement considers a setting where $n$ parties with fixed, known identities want to agree on an output in the presence of an adversary. Motivated by blockchain systems, the assumption of fixed identities is weakened by using a \emph{resource-based model}. In such models, parties do not have fixed known identities but instead have to invest some expensive resources to participate in the protocol. Prominent examples for such resources are computation (measured by, e.g., proofs-of-work) or money (measured by proofs-of-stake). Unlike in the classical setting where BA without trusted setup (e.g., a PKI or an unpredictable beacon) is impossible for $t \geq n/3$ corruptions, in such resource-based models, BA can be constructed for the optimal threshold of $t
Positive Result: We present the first protocol for BA with expected constant round complexity and termination under adaptive corruption, honest majority and without a PKI. Earlier work achieved round complexity $O(n\kappa^2)$ (CRYPTO'15) or $O(\kappa)$ (PKC'18), where $\kappa$ is the security parameter.

Negative Result: We give the first lower bound on the communication complexity of BA in a model where parties have restricted computational resources. Concretely, we show that a multicast complexity of $O(\sqrt{n})$ is necessary even if the parties have access to a VDF oracle.
Expand

Additional news items may be found on the IACR news page.