International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 01 May 2016

Sumanta Sarkar, Siang Meng Sim
ePrint Report ePrint Report
In this paper, we study the behavior of the XOR count distributions under different bases of finite field. XOR count of a field element is a simplified metric to estimate the hardware implementation cost to compute the finite field multiplication of an element. It is an important criterion in the design of lightweight cryptographic primitives, typically to estimate the efficiency of the diffusion layer in a block cipher. Although several works have been done to find lightweight MDS diffusion matrices, to the best of our knowledge, none has considered finding lightweight diffusion matrices under other bases of finite field apart from the conventional polynomial basis. The main challenge for considering different bases for lightweight diffusion matrix is that the number of bases grows exponentially as the dimension of a finite field increases, causing it to be infeasible to check all possible bases. Through analyzing the XOR count distributions and the relationship between the XOR count distributions under different bases, we find that when all possible bases for a finite field are considered, the collection of the XOR count distribution is invariant to the choice of the irreducible polynomial of the same degree. In addition, we can partition the set of bases into equivalence classes, where the XOR count distribution is invariant in an equivalence class, thus when changing bases within an equivalence class, the XOR count of a diffusion matrix will be the same. This significantly reduces the number of bases to check as we only need to check one representative from each equivalence class for lightweight diffusion matrices. The empirical evidence from our investigation says that the bases which are in the equivalence class of the polynomial basis are the recommended choices for constructing lightweight MDS diffusion matrices.
Expand

Additional news items may be found on the IACR news page.