International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 25 April 2016

Seiko Arita, Shota Nakasato
ePrint Report ePrint Report
In this paper, based on the FV scheme, we construct a first fully homomorphic encryption scheme FHE4FX that can homomorphically compute addition and/or multiplication of encrypted fixed point numbers without knowing the secret key. Then, we show that in the FHE4FX scheme one can efficiently and homomorphically compare magnitude of two encrypted numbers. That is, one can compute an encryption of the greater-than bit that represents whether or not $x > x'$ given two ciphertexts $c$ and $c'$ (of $x$ and $x'$, respectively) without knowing the secret key. Finally we show that these properties of the FHE4FX scheme enables us to construct a fully homomorphic encryption scheme FHE4FL that can homomorphically compute addition and/or multiplication of encrypted floating point numbers.
Expand

Additional news items may be found on the IACR news page.