International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 18 February 2016

Maciej Skorski
ePrint Report ePrint Report
Security of a cryptographic application is typically defined by a security game. The adversary, within certain resources, cannot win with probability much better than $0$ (for unpredictability applications, like one-way functions) or much better than $\frac{1}{2}$ (indistinguishability applications for instance encryption schemes). In so called \emph{squared-friendly applications} the winning probability of the adversary, for different values of the application secret randomness, is not only close to $0$ or $\frac{1}{2}$ on average, but also concentrated in the sense that it's second central moment is small. The class of squared-friendly applications, which contains all unpredictability applications and many indistinguishability applications, is particularly important in the context of key derivation. Barak et al. observed that for square-friendly applications one can beat the ``RT-bound'', extracting secure keys with significantly smaller entropy loss. In turn Dodis and Yu showed that in squared-friendly applications one can directly use a ``weak'' key, which has only high entropy, as a secure key.

In this paper we give sharp lower bounds on square security assuming security for ``weak'' keys. We show that \emph{any} application which is either (a) secure with weak keys or (b) allows for saving entropy in a key derived by hashing, \emph{must} be square-friendly. Quantitatively, our lower bounds match the positive results of Dodis and Yu and Barak et al. (TCC'13, CRYPTO'11) Hence, they can be understood as a general characterization of squared-friendly applications.

Whereas the positive results on squared-friendly applications where derived by one clever application of the Cauchy-Schwarz Inequality, for tight lower bounds we need more machinery. In our approach we use convex optimization techniques and some theory of circular matrices.
Expand

Additional news items may be found on the IACR news page.