International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 16 July 2015

Ayantika Chatterjee, Indranil Sengupta
ePrint Report ePrint Report
This paper proposes design of a Fully Homomorphic Ultimate RISC (FURISC) based

processor. The FURISC architecture supports arbitrary operations on data encrypted

with Fully Homomorphic Encryption (FHE) and allows the execution of encrypted programs stored in processors with encrypted memory addresses. The FURISC architecture is designed based on fully homomorphic single RISC instructions like {\\em Subtract Branch if Negative} (SBN) and {\\em MOVE}. This paper explains how the use of FHE for designing the ultimate RISC processor is better in terms of security compared to previously proposed somewhat homomorphic encryption (SHE) based processor. The absence of randomization in SHE can lead to Chosen Plaintext Attacks (CPA) which is alleviated by the use of the FHE based Ultimate RISC instruction. Furthermore, the use of FURISC helps to develop fully homomorphic applications by tackling the {\\em termination} problem, which is a major obstacle for FHE processor design. The paper compares the MOVE based FHE RISC processor with the SBN alternative, and shows that the later is more efficient in terms of number of instructions and time required for the execution of a program. Finally, an SBN based FURISC processor simulator has been designed

to demonstrate that various algorithms can indeed be executed on data encrypted with FHE, providing a solution to the termination problem for FHE based processors and the CPA insecurity of SHE processors simultaneously.

Expand

Additional news items may be found on the IACR news page.