International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 08 June 2015

Benoît Cogliati, Rodolphe Lampe, Yannick Seurin
ePrint Report ePrint Report
We study how to construct efficient tweakable block ciphers in the Random Permutation model, where all parties have access to public random permutation oracles. We propose a construction that combines, more efficiently than by mere black-box composition, the CLRW construction (which turns a traditional block cipher into a tweakable block cipher) of Landecker et al. (CRYPTO 2012) and the iterated Even-Mansour construction (which turns a tuple of public permutations into a traditional block cipher) that has received considerable attention since the work of Bogdanov et al. (EUROCRYPT 2012). More concretely, we introduce the (one-round) tweakable Even-Mansour (TEM) cipher, constructed from a single $n$-bit permutation $P$ and a uniform and almost XOR-universal family of hash functions $(H_k)$ from some tweak space to $\\{0,1\\}^n$, and defined as $(k,t,x)\\mapsto H_k(t)\\oplus P(H_k(t)\\oplus x)$, where $k$ is the key, $t$ is the tweak, and $x$ is the $n$-bit message, as well as its generalization obtained by cascading $r$ independently keyed rounds of this construction. Our main result is a security bound up to approximately $2^{2n/3}$ adversarial queries against adaptive chosen-plaintext and ciphertext distinguishers for the two-round TEM construction, using Patarin\'s H-coefficients technique. We also provide an analysis based on the coupling technique showing that asymptotically, as the number of rounds $r$ grows, the security provided by the $r$-round TEM construction approaches the information-theoretic bound of $2^n$ adversarial queries.

Expand

Additional news items may be found on the IACR news page.