International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 19 May 2015

Tibor Jager
ePrint Report ePrint Report
Time-lock encryption is a method to encrypt a message such that it can only be decrypted after a certain deadline has passed. A computationally powerful adversary should not be able to learn the message before the deadline. However, even receivers with relatively weak computational resources should immediately be able to decrypt after the deadline, without any interaction with the sender, other receivers, or a trusted third party.

We show how to realize this strong notion of secure encryption by making the additional, very realistic assumption that intermediate results of an iterative, public, large-scale computation --- like the computations performed by users of the popular cryptocurrency Bitcoin --- are publicly available. We use these computations as a \"computational reference clock\", which mimics a physical clock in a computational setting, and show how the computations performed by the reference clock can be \"reused\" to build secure time-lock encryption. A nice feature of this approach is that it can be based on a public computation which is performed \"anyway\" and independent of the time-lock encryption scheme.

We provide the first formal definitions of computational reference clocks and time-lock encryption, and give a proof-of-concept construction which combines a computational reference clock with witness encryption (Garg et al., STOC 2013). We also explain how to construct a computational reference clock based on Bitcoins.

Expand

Additional news items may be found on the IACR news page.