International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 11 March 2015

Alex Biryukov, Dmitry Khovratovich
ePrint Report ePrint Report
We explore time-memory and other tradeoffs for memory-hard functions, which are supposed to impose significant computational and time penalties if less memory is used than intended. We analyze two schemes: Catena, which has been presented at Asiacrypt 2014, and Lyra2, the fastest finalist of the Password Hashing Competition (PHC).

We demonstrate that Catena\'s proof of tradeoff resilience is flawed, and attack it with a novel \\emph{precomputation tradeoff}. We show that using $M^{2/3}$ memory instead of $M$ we may have no time penalties. We further generalize our method for a wide class of schemes with predictable memory access.

For Lyra2, which addresses memory unpredictability (depending on the input), we develop a novel \\emph{ranking tradeoff} and show how to decrease the time-memory and the time-area product by significant factors. We also generalize the ranking method for a wide class of schemes with unpredictable memory access.

Expand

Additional news items may be found on the IACR news page.