International Association for Cryptologic Research

International Association
for Cryptologic Research

IACR News item: 27 February 2015

Brett Hemenway, Rafail Ostrovsky
ePrint Report ePrint Report
Injective one-way trapdoor functions are one of the most fundamental cryptographic primitives. In this work we show how to derandomize lossy encryption (with long messages) to obtain lossy trapdoor functions, and hence injective one-way trapdoor functions.

Bellare, Halevi, Sahai and Vadhan (CRYPTO \'98) showed that if E is an IND-CPA secure cryptosystem, and $H$ is a random oracle, then $x \\mapsto E(x,H(x))$ is an injective trapdoor function. In this work, we show that if E is a lossy encryption with messages at least 1-bit longer than randomness, and $h$ is a pairwise independent hash function, then $x \\mapsto E(x,h(x))$ is a lossy trapdoor function,

and hence also an injective trapdoor function.

The works of Peikert, Vaikuntanathan and Waters and Hemenway, Libert, Ostrovsky and Vergnaud showed that statistically-hiding 2-round Oblivious Transfer (OT) is equivalent to Lossy Encryption.

In their construction, if the sender randomness is shorter than the message in the OT, it will also be shorter than the message in the lossy encryption.

This gives an alternate interpretation of our main result. In this language, we show that any 2-message statistically sender-private semi-honest oblivious transfer (OT) for strings

longer than the sender randomness implies the existence of injective one-way trapdoor functions. This is in contrast to the black box separation of

injective trapdoor functions from many common cryptographic protocols, e.g. IND-CCA encryption.

Expand

Additional news items may be found on the IACR news page.